5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1

368 STEP 4. Review the Knowledge You Need to Score High


Since

∑∞
n= 1

1


n
diverges, this series diverges as
well. Whenx= 2 a, the series becomes
∑∞
n= 1

(−1)n−^1 (2a−a)n
nan

=


∑∞
n= 1

(−1)n−^1
n

. This
alternating series converges; therefore, the
interval of convergence is (0, 2a].
14. Calculate the derivatives and evaluate at
x=1.f(x)=ex^2 and f(1)=e.
f′(x)= 2 xex^2 and f′(1)= 2 e.
f′′(x)= 4 x^2 ex^2 + 2 ex^2 andf′′(1)= 6 e.
f′′′(x)= 8 x^3 ex^2 + 12 xex^2 and f′′′(1)= 20 e.
f(4)(x)= 16 x^4 ex^2 + 48 x^2 ex^2 + 12 ex^2 and
f(4)(1)= 76 e. Then the function
f(x)=ex^2 can be approximated by
e
0!
(x−1)^0 +
2 e
1!
(x−1)^1 +
6 e
2!
(x−1)^2 +
20 e
3!
(x−1)^3 +


76 e
4!
(x−1)^4. Simplifying
f(x)=ex^2 ≈e+ 2 e(x−1)+ 3 e(x−1)^2 +
10 e
3

(x−1)^3 +
19 e
6

(x−1)^4.


  1. f


(
1
2

)
=cos

(
π
2

)
=0. Find the

derivatives and evaluate atx=

1


2


.


f′

(
1
2

)
=−πsinπx|x= 1 / 2 =−π,

f′′

(
1
2

)
=−π^2 cosπx|x= 1 / 2 =0,

f′′′

(
1
2

)
=π^3 sinπx|x= 1 / 2 =π^3 , and

f(4)

(
1
2

)
=π^4 cosπx|x= 1 / 2 =0. Then

f(x)=cosπxaroundx=

1


2


can be

approximated by

0


0!


(
x−

1


2


) 0
+

−π
1!

(
x−

1


2


) 1
+

0


2!


(
x−

1


2


) 2
+
π^3
3!

(
x−

1


2


) 3
+

0


4!


(
x−

1


2


) 4
or

−π

(
x−

1


2


)
+
π^3
6

(
x−

1


2


) 3
.


  1. Atx=e,f(e)=lne=1,
    f′(e)=


1


x

∣∣

∣x=e=

1


e
, f′′(e)=

− 1


x^2

∣∣

∣x=e=

− 1


e^2

,


f′′′(e)=

2


x^3

∣∣
∣∣
x=e

=


2


e^3

, and

f(4)(e)=

− 6


x^4

∣∣
∣∣
x=e

=


− 6


e^4
.f(x)=lnxcan be

approximated by

1


0!


(x−e)^0 +
1 /e
1!

(x−e)^1 +
− 1 /e^2
2!

(x−e)^2 +
2 /e^3
3!
(x−e)^3 +
− 6 /e^4
4!
(x−e)^4 = 1 +
x−e
e

(x−e)^2
2 e^2

+


(x−e)^3
3 e^3


(x−e)^4
4 e^4

.



  1. Calculate the derivatives and evaluate at
    x=0.f(x)=


1


1 −x
, f(0)=1,

f′(x)=

1


(1−x)^2
,f′(0)=1,

f′′(x)=

2


(1−x)^3
,f′′(x)=2,

f′′′(x)=

6


(1−x)^4
,f′′′(x)=6,

f(4)(x)=

24


(1−x)^5
,f(4)(x)=24. In general,
f(n)(0)=n!, so the MacLaurin series

f(x)=

1


1 −x

=


∑∞
n= 0

f(n)(x)
n!
xn=
∑∞
n= 0

n!
n!
xn=

∑∞
n= 0

xn. The series converges to

f(x)=

1


1 −x
when limn→∞

∣∣
∣∣x

n+ 1
xn

∣∣
∣∣=

nlim→∞|x|<1. The series converges on
(−1, 1). Whenx=1, the series becomes
∑∞
n= 0

1 n, which diverges. Whenx=−1, the

series becomes
∑∞
n= 0

(−1)n, which diverges.
Therefore, the interval of convergence
is (−1, 1).
Free download pdf