5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
AP Calculus BC Practice Exam 1 401


  1. Givenf(0)=1,f′(0)=6,f′′(0)=−4, and
    f′′′(0)= 30.


(A) The third-degree Taylor polynomial forf
aboutx=0is

f(x)≈
f( 0 )
0!
x^0 +
f′( 0 )
1!
x^1 +
f′′( 0 )
2!
x^2

+


f′′′( 0 )
3!
x^3

≈ 1 + 6 x+

− 4


2


x^2 +

30


6


x^3

≈ 1 + 6 x− 2 x^2 + 5 x^3.

To approximatef(0.1):
f(0.1)≈ 1 +6(0.1)−2(0.1)^2 +5(0.1)^3
≈ 1 + 0. 6 −2(0.01)+5(0.001)
≈ 1 + 0. 6 − 0. 02 + 0. 005
≈ 1. 585.
(B) The sixth degree Taylor polynomial for
g(x)= f(x^2 ), aboutx=0, is
g(x)= f

(
x^2

)

≈ 1 + 6

(
x^2

)
− 2

(
x^2

) 2
+ 5

(
x^2

) 3

g(x)≈ 1 + 6 x^2 − 2 x^4 + 5 x^6.
(C) The seventh degree Taylor polynomial for
h(x)=

∫x

0

g(t)dt, aboutx=0, is

h(x)≈

∫x

0

(
1 + 6 t^2 − 2 t^4 + 5 t^6

)
dt

h(x)≈

[
t+

6


3


t^3 −

2


5


t^5 +

5


7


t^7

]x

0
h(x)≈x+ 2 x^3 −

2


5


x^5 +

5


7


x^7.


  1. Givenx=2(θ −sinθ) andy=2(1−cosθ):


(A)
dx

= 2 ( 1 −cosθ)and
dy

=2 sinθ.
Divide to find

dy
dx

=


2 sinθ
2 ( 1 −cosθ)

=


sinθ
1 −cosθ

.


(B) Atθ=π,x=2(π−sinπ)= 2 π,
y=2(1−cosπ)=4, and
dy
dx

∣∣
∣∣
θ=π

=


sinπ
1 −cosπ

=0.


The tangent line at (2π, 4) is horizontal,
so the equation of the tangent isy=4.
(C) Atθ= 2 π,x=2(2π−sin 2π)= 4 π,
y=2(1−cos 2π)=0, and
dy
dx

∣∣
∣∣
θ= 2 π

=


sin 2π
1 −cos 2π

=


0


0


. Since the


derivative is undefined, the tangent line at
(4π, 0) is vertical, so the equation of the
tangent isx= 4 π.
(D)

L=

∫ 2 π

0


[ 2 ( 1 −cosθ)]^2 +[2 sinθ]^2 dθ

=


∫ 2 π

0


4(1−2 cosθ+cos^2 θ)+4 sin^2 θdθ

=


∫ 2 π

0


4 −8 cosθ+4 cos^2 θ+4 sin^2 θdθ

=


∫ 2 π

0


4 −8 cosθ+ 4 dθ

=


∫ 2 π

0


8 −8 cosθdθ

= 2



2

∫ 2 π

0


1 −cosθdθ
Free download pdf