AP Calculus BC Practice Exam 2 427- The correct answer is (A).
∑∞n= 1n!+ 2 n
2 n·n!=
∑∞n= 1n!
2 n·n!+
∑∞n= 12 n
2 n·n!=
∑∞n= 11
2 n+
∑∞n= 11
n!The series∑∞n= 11
2 n
is a geometric series, so∑∞n= 11
2 n=
1 / 2
1 − 1 / 2
=1.
Compare the series∑∞n= 11
n!
to the knownMacLaurin series
∑∞n= 0xn
n!
= 1 +x+
x^2
2!+
x^3
3!
···=ex, andatx=1,∑∞n= 0xn
n!=
∑∞n= 01
n!= 1 + 1 +1
2!
+
1
3!
···=e^1. Thus,∑∞
n= 11
n!
=e^1 −1.
(Note that the summation index changes from
n=0ton=1.) Therefore,
∑∞n= 11
2 n+
∑∞n= 11
n!
= 1 +e− 1 =e. (Also, youcould have evaluated∑∞n= 11
n!
using your T1-89calculator.)- The correct answer is (B).
y=1
x^2−
1
x^3
=x−^2 −x−^3⇒y′=− 2 x−^3 + 3 x−^4 ⇒y′′= 6 x−^4 − 12 x−^5. Set
the second derivative equal to zero and solve.
6
x^4−
12
x^5=
6 x− 12
x^5= 0
⇒ 6 x− 12 = 0 ⇒x=2. Alsoy′′< 0
forx<2 andy′′>0 forx>2.- The correct answer is (D).
The logistic growth model to the logistic
differential equation
dp
dt
=kp
(
1 −
p
M)
with
Mequal to the maximum value is
p=M
1 +Ae−kt. In this case,p=
200
1 +Ae−.^25 tand
t=0, you havep=20. Thus,
20 =200
1 +Ae(−.25)(0)
or 20=200
1 +A
orA=9,Thus, atp=100, 100=200
1 + 9 e−.^25 t
and
entering the equation into your calculator, you
havet≈ 8. 789 ≈9 years.