5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1

438 Formulas and Theorems


(b) Givenr=f(θ)andα≤θ≤β, the area
of the region between the curve, the origin,
θ=αandθ=β:
A=

∫β

α

1


2


r^2 dθ or A=

1


2


∫β

α

[f(θ)]^2 dθ.
(c) Area between two Polar Curves:
Givenr 1 = f(θ)andr 2 =g(θ),
0 ≤r 1 ≤r 2 andα≤θ≤β, the area
betweenr 1 andr 2 :

A=

∫β

α

1


2


(
r 2

) 2
dθ−

∫β

α

1


2


(
r 1

) 2

=


∫β

α

1


2


((
r 2

) 2

(
r 1

) 2 )
dθ.


  1. Series and Convergence:
    (a) Geometric Series:
    ∑∞


k= 0

ark=a+ar+ar^2 +ar^3 +···

+ark−^1 ··· (a=/0)
if|r|≥1, series diverges;
if|r|<1, series converges and the
sum=
a
1 −r

.


(Partial sum of the firstnterms:
Sn=
a−arn
1 −r

for all geometric series.)

(b) p- Series:

∑∞

k= 1

1


kp

= 1 +


1


2 p

+


1


3 p

+


1


4 p

···


+


1


kp

+···


ifp>1, series converges;
if 0<p≤1, series diverges.

(c) Alternating Series:

∑∞

k= 1

(− 1 )k+^1 ak=a 1 −

a 2 +a 3 −a 4 +···+(− 1 )k+^1 ak+···or
∑∞

k= 1

(− 1 )kak=−a 1 +a 2 −a 3 +a 4 −

···+(− 1 )kak+···, whereak>0 for all
ks.
Series converges if

(1) a 1 ≥a 2 ≥a 3 ··· ≥ak≥ ···and
(2) klim→∞ak=0.

(Note: Both conditions must be satisfied
before the series converges.)
Error Approximation:
IfS=sum of an alternating series,andSn=
partial sum of n terms,∣ then
∣error∣∣=|S−Sn|≤an+ 1.
(d) Harmonic Series:
∑∞

k= 1

1


k

= 1 +


1


2


+


1


3


+


1


4


+···diverges.

Alternating Harmonic Series:
∑∞

k= 1

(− 1 )k+^11
k

= 1 −


1


2


+


1


3



1


4


+···+


(− 1 )


k+ 11
k
+···converges.

(

∑∞

k= 1

(− 1 )k^1
k

=− 1 +


1


2



1


3


+


1


4



···+(− 1 )k

1


k
+···also converges.)


  1. Convergence Tests for Series:
    (a) Divergence Test:
    Given a series


∑∞
k= 1

ak, if limk→∞ak=/0, then the
series diverges.
(b) Ratio Test for Absolute Convergence:
Given

∑∞
k= 1

akwhereak/=0 for allks and let

p=klim→∞
|ak+ 1 |
|ak|
, then the series

∑∞
k= 1

ak

(1)converges absolutely ifp<1;
(2)diverges ifp>1;
(3)needs more testing ifp=1.

(c) Comparison Test:
Given
∑∞
k= 1

akand
∑∞
k= 1

bkwith
ak>0,bk>0 for allks, and
a 1 ≤b 1 ,a 2 ≤b 2 ,...ak≤bkfor allks:

(1)If

∑∞
k= 1

bkconverges, then

∑∞
k= 1

ak
converges.
(Note that if the bigger series converges,
then the smaller series converges.)
Free download pdf