5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Formulas and Theorems 439

(2) If

∑∞
k= 1

akdiverges, then

∑∞
k= 1

bkdiverges.

(Note that if the smaller series diverges,
then the bigger series diverges.)

(d) Limit Comparison Test:
Given

∑∞
k= 1

akand

∑∞
k= 1

bkwith
ak>0,bk>0 for allks, and
letp=klim→∞
ak
bk
,if0<p<∞, then both
series converge or both series diverge.
(e) Integral Test:
Given

∑∞
k= 1

ak,ak>0 for allks, and
ak=f(k)for some function f(x),
if the function fis positive, continuous,
and decreasing for allx≥1, then

∑∞
k= 1

ak

and

∫∞

1

f(x)dx, either both converge or
both diverge.


  1. Maclaurin Series:


f(x)=

∑∞

k= 0

f(k)( 0 )
k!
xk

=f( 0 )+ f′( 0 )x+
f′′( 0 )
2!
x^2

+···+


f(k)( 0 )
k!
xk+···

sinx=

∑∞

k= 0

(− 1 )k
x^2 k+^1
( 2 k+ 1 )!

=x−
x^3
3!

+


x^5
5!


x^7
7!

+··· x∈R

cosx=

∑∞

k= 0

(− 1 )k
x^2 k
( 2 k)!

= 1 −


x^2
2!

+


x^4
4!


x^6
6!
+··· x∈R

ex=

∑∞

k= 0

xk
k!

= 1 +x+
x^2
2!

+


x^3
3!

+


x^4
4!
+··· x∈R

1
1 −x

=


∑∞

k= 0

xk

= 1 +x+x^2 +x^3 +··· x∈(−1, 1)
1
1 +x

=


∑∞

k= 0

(− 1 )kxk

= 1 −x+x^2 −x^3 +···+(−1)kxk+···
x∈(−1, 1)

ln( 1 +x)=

∑∞

k= 0

(− 1 )kx

k+ 1
k+ 1

=x−
x^2
2

+


x^3
3


x^4
4

+···


x∈(−1, 1]

tan−^1 x=

∑∞

k= 0

(− 1 )k
x^2 k+^1
2 k+ 1

=x−

x^3
3

+


x^5
5


x^7
7

+···


x∈[−1, 1]


  1. Taylor Series:


f(x)=

∑∞

k= 0

f(k)(a)
k!
(x−a)k

=f(a)+f′(a)(x−a)

+
f′′(a)
2!
(x−a)^2 +···

+


f(k)(a)
k!
(x−a)k+···
Free download pdf