28 STEP 2. Determine Your Test Readiness3.4 Solutions to Diagnostic Test
Chapter 5
- See Figure DS-1.
Ifb=2, thenx=−1 would be a solution for
f(x)=2.
Ifb=0or−2,f(x)=2 would have two
solutions.
Thus,b=3, choice (A).
–2–1–2 0–11423(–2,4) (0,4)
yxy = 2Figure DS-1- xlim→−∞
√
x^2 − 4
2 x
=xlim→−∞√
x^2 − 4/
(−√
x^2 )
2 x/
(−√
x^2 )
(Note: asx→−∞,x=−√
x^2 .)=xlim→−∞−
√
(x^2 −4)/
x^2
2=xlim→−∞−
√
1 −(4/x^2 )
2=−√
1
2=−
1
2
- h(x)=
{√
x ifx> 4
x^2 −12 ifx≤ 4
xlim→ 4 +h(x)=xlim→ 4 +√
x=√
4 = 2xlim→ 4 −h(x)=xlim→ 4 −(x^2 −12)=(4^2 −12)=^4
Since limx→ 4 +h(x)/=xlim→ 4 −h(x), thus limx→ 4 h(x)
does not exist.- f(x)=
∣∣
2 xex∣∣
={
2 xex ifx≥ 0
− 2 xex ifx< 0
Ifx≥0,f′(x)= 2 ex+ex( 2 x)=
2 ex+ 2 xexxlim→ 0 + f′(x)=xlim→ 0 +(^2 ex+^2 xex)=
2 e^0 + 0 = 2
Chapter 6- f(x)=−2 csc (5x)
f′(x)=−2(−csc 5x)cot (5x)
=10 csc (5x) cot (5x)
f′
(
π
6)
=10 csc(
5 π
6)
cot(
5 π
6)=10(2)(−
√
3)=− 20√
3- y=(x+1)(x−3)^2 ;
dy
dx
=(1)(x−3)^2 +2(x−3)(x+1)
=(x−3)^2 +2(x−3)(x+1)
dy
dx
∣∣
∣∣
x=− 1=(− 1 −3)^2 +2(− 1 −3)(− 1 +1)
=(−4)^2 + 0 = 16
- f′(x 1 )= lim
Δx→ 0
f(x 1 +Δx)− f(x 1 )
ΔxThus, lim
Δx→ 0tan(
π
4+Δx)
−tan(
π
4)Δx
=d
dx
(tanx)atx=π
4
=sec^2(
π
4)
=(√
2)^2 = 2- ByL’Hoˆpital’sRule, limx→π
ex−eπ
xe−πe
=xlim→π
ex
exe−^1
=xlim→π
ex−^1
xe−^1
=
eπ−^1
πe−^1.
Chapter 7- See Figure DS-2 on the next page.
- I. Since the graph ofgis decreasing and
then increasing, it is not monotonic.
II. Since the graph ofgis a smooth curve,
g′is continuous.
III. Since the graph ofgis concave upward,
g′′>0.
Thus, only statements II and III are true.