Limits and Continuity 575.2 Limits Involving Infinities
Main Concepts:Infinite Limits (asx→a), Limits at Infinity (asx →∞), Horizontal
and Vertical AsymptotesInfinite Limits (asx→a)
If f is a function defined at every number in some open interval containinga, except
possibly ataitself, then(1) limx→a f(x)=∞means that f(x) increases without bound asxapproachesa.
(2) limx→a f(x)=−∞means that f(x) decreases without bound asxapproachesa.Limit Theorems
(1) Ifnis a positive integer, then(a) xlim→ 0 +1
xn=∞
(b) xlim→ 0 −1
xn=
{
∞ ifnis even
−∞ ifnis odd.
(2) If the limx→a f(x)=c,c>0, and limx→ag(x)=0, thenlimx→a
f(x)
g(x)=
{
∞ ifg(x) approaches 0 through positive values
−∞ ifg(x) approaches 0 through negative values.
(3) If the limx→a f(x)=c,c<0, and limx→ag(x)=0, thenlimx→a
f(x)
g(x)=
{
−∞ ifg(x) approaches 0 through positive values
∞ ifg(x) approaches 0 through negative values.
(Note that limit theorems 2 and 3 hold true forx→a+andx→a−.)Example 1
Evaluate the limit: (a) limx→ 2 +
3 x− 1
x− 2
and (b) limx→ 2 −
3 x− 1
x− 2.
The limit of the numerator is 5 and the limit of the denominator is 0 through positive
values. Thus, limx→ 2 +
3 x− 1
x− 2
=∞. (b) The limit of the numerator is 5 and the limit of thedenominator is 0 through negative values. Therefore, limx→ 2 −
3 x− 1
x− 2
=−∞. Verify your result
with a calculator. (See Figure 5.2-1.)