Limits and Continuity 675.4 Rapid Review
- Findf(2) and limx→ 2 f(x) and determine iffis continuous atx=2. (See Figure 5.4-1.)
Answer: f(2)=2, limx→ 2 f(x)=4, and fis discontinuous atx=2.2024(4, 2)yxf(x)(2, 2)Figure 5.4-1- Evaluate limx→a
x^2 −a^2
x−a
.
Answer: limx→a
(x+a)(x−a)
x−a
= 2 a.- Evaluate limx→∞
1 − 3 x^2
x^2 + 100 x+ 99
.
Answer: The limit is−3, since the polynomials in the numerator and denominator
have the same degree.- Determine iff(x)=
{
x+6 forx< 3
x^2 forx≥ 3
is continuous atx=3.Answer: The functionfis continuous, sincef(3)=9, limx→ 3 +f(x)=xlim→ 3 − f(x)=9, and
f(3)=limx→ 3 f(x).- If f(x)=
{
ex forx/= 0
5 forx= 0, find limx→ 0 f(x).Answer: limx→ 0 f(x)=1, since limx→ 0 +f(x)=xlim→ 0 − f(x)=1.- Evaluate limx→ 0
sin 6x
sin 2x
.
Answer: The limit is6
2
=3, since limx→ 0
sinx
x