AP-Calculus-BC 2727-MA-Book May 11, 2018 14:1074 STEP 4. Review the Knowledge You Need to Score High
- To find horizontal asymptotes, examine
the limx→∞f(x) and the limx→−∞f(x). The
xlim→∞f(x)=xlim→∞x
√
x^2 + 4. Dividing by
the highest power ofx(and in this case,
it’sx), you obtain limx→∞
x/x
√
x^2 + 4 /x
.Asx→∞,x=√
x^2. Thus, you havexlim→∞x/x
√
x^2 + 4 /√
x^2=xlim→∞1
√
x^2 + 4
x^2
=xlim→∞1
√
1 +4
x^2=1. Thus, the liney= 1is a horizontal asymptote.
The limx→−∞f(x)=x→lim−∞
x
√
x^2 + 4.
Asx→−∞,x=−√
x^2. Thus, limx→−∞
x
√
x^2 + 4
=xlim→−∞
x/x
√
x^2 + 4 /(
−√
x^2)=xlim→−∞1
−
√
1 +4
x^2=−1.
Therefore, the liney=−1 is a horizontal
asymptote. As for vertical asymptotes,
f(x) is continuous and defined for all real
numbers. Thus, there is no vertical
asymptote.