80 STEP 4. Review the Knowledge You Need to Score High
Example 4
Using a calculator, findf′(x) and f′(3) if f(x)=1
√
x.
There are several ways of finding f′(x) and f′(9) using a calculator. One way to
use thed[Differentiate] function. Go to the Home screen. SelectF3-Calcand then select
d[Differentiate]. Enterd(1/√
(x), x). The result is f′(x)=− 1
2 x32. To find f′(3), enter
d(1/√
(x), x)|x=3. The result is f′(3)=− 1
54
.
The Sum, Difference, Product, and Quotient Rules
Ifuandvare two differentiable functions, then
d
dx
(u±v)=du
dx±
dv
dx
Sum & Difference Rules
d
dx(uv)=v
du
dx+u
dv
dxProduct Ruled
dx(u
v)
=v
du
dx−u
dv
dx
v^2
,v/= 0 Quotient RuleSummary of Sum, Difference, Product, and Quotient Rules
(u±v)′=u′±v′ (uv)′=u′v+v′u(u
v)′
=
u′v−v′u
v^2
Example 1
Findf′(x)iff(x)=x^3 − 10 x+5.
Using the sum and difference rules, you can differentiate each term and obtain f′(x)=
3 x^2 − 10. Or using your calculator, select the d[Differentiate] function and enter
d(x^3 − 10 x+5,x) and obtain 3x^2 −10.Example 2
Ify=(3x−5)(x^4 + 8 x−1), find
dy
dx.
Using the product rule
d
dx
(uv)=v
du
dx
+u
dv
dx
, letu=(3x−5) andv=(x^4 + 8 x−1).Then
dy
dx
=(3)(x^4 + 8 x−1)+(4x^3 +8)(3x−5)=(3x^4 + 24 x−3)+(12x^4 − 20 x^3 +
24 x −40)= 15 x^4 − 20 x^3 + 48 x −43. Or you can use your calculator and enter
d((3x−5)(x^4 + 8 x−1), x) and obtain the same result.Example 3
Iff(x)=
2 x− 1
x+ 5
, find f′(x).Using the quotient rule(u
v)′
=
u′v−v′u
v^2
, letu = 2 x −1 and v = x +5. Thenf′(x)=
(2)(x+5)−(1)(2x−1)
(x+5)^2=
2 x+ 10 − 2 x+ 1
(x+5)^2=
11
(x+5)^2,x /=− 5 .Or you can use
your calculator and enterd((2x−1)/(x+5), x) and obtain the same result.