Example 5: (^) ∫ x cos(3x^2 + 1) dx =
Let u = 3x^2 + 1. Then du = 6x dx. We need to substitute for x dx, so we can rearrange the du term.
du = x dx
Now substitute.
∫^ cos u du
Evaluate the integral.
∫^ cos u du = sin u + C
And substitute back.
sin u + C = sin(3x^2 + 1) + C
Example 6: (^) ∫ x sec^2 (x^2 ) dx =
Let u = x^2 . Then du = 2x dx and du = x dx.
Substitute.
∫^ sec
(^2) u du
Evaluate the integral.
∫ sec
(^2) u du = tan u + C
Now the original function goes back in.
tan (x^2 ) + C