. Now we can integrate: = =
. Last, we substitute back and get .
4.
If we let u = x^3 + 3x, then du = (3x^2 + 3) dx. We need to substitute for (x^2 + 1) dx, so we can
divide the du term by 3: = (x^2 + 1) dx. Next we can substitute into the integral: ∫(x^2 + 1)(x^3
- 3x)−5 dx = (^) ∫u−5 du. Now we can integrate: = . Last,
we substitute back and get .
- −2 cos + C
If we let u = , then du = dx. We need to substitute for dx, so we can multiply the
du term by 2: 2du = dx. Next we can substitute into the integral: ∫ sin dx = 2∫ sin
u du. Now we can integrate: 2 ∫sin u du = −2 cos u + C. Last, we substitute back and get −2
cos + C.
- tan (x^3 ) + C
If we let u = x^3 , then du = 3x^2 dx. We need to substitute for x^2 dx, so we can divide the du term
by 3: = x^2 dx. Next we can substitute into the integral: ∫x^2 sec^2 (x^3 ) dx = (^) ∫ sec^2 u du.
Now we can integrate: (^) ∫ sec^2 u du = tan u + C. Last, we substitute back and get tan (x^3 )