7.
If we let u = , then du = − dx. We need to substitute for dx, so we can divide the du
term by −3: − dx. Next we can substitute into the integral:
. Now we can integrate: − (^) ∫ cos u du = − sin u + C.
Last, we substitute back and get
- − cos (sin x) + C
If we let u = sin x, then du = cos x dx. Next we can substitute into the integral: ∫sin (sin x) cos
x dx = ∫sin u du. Now we can integrate: ∫sin u du = − cos u + C. Last, we substitute back and
get − cos (sin x) + C.
SOLUTIONS TO PRACTICE PROBLEM SET 20
1.
First, let’s draw a picture.