sin θ = csc θ = Thus, sin θ =
cos θ = sec θ = Thus, cos θ =
tan θ = cot θ = Thus, tan θ =
sin 2θ = 2sinθ cosθ cos 2θ = 1 − 2sin^2 θ sin^2 θ + cos^2 θ = 1
cos 2θ = cos^2 θ − sin^2 θ cos 2θ = 2cos^2 θ − 1 1 + tan^2 θ = sec^2 θ
cos^2 θ = sin^2 θ = 1 + cot^2 θ = csc^2 θ
sin(A + B) = sin A cos B + cos A sin B
sin(A − B) = sin A cos B − cos A sin B
cos(A + B) = cos A cos B − sin A sin B
cos(A − B) = cos A cos B + sin A sin B
You must be able to work in radians and know that 2π = 360°.
You should know the following: