CK12 - Geometry

(Marvins-Underground-K-12) #1
Given: ;

Prove:

Statement Reason


  1. ; Given
    Definitionof congruentsegments



  2. Transitivepropertyof equality

  3. Definitionof congruentsegments


AngleCongruenceProperties


Watch for proofsof the AngleCongruencePropertiesin the LessonExercises.


Reflexive:
Symmetric: If , then
Transitive: If and , then

LessonSummary


In this lessonwe lookedat old informationin a new light.We saw that the propertiesof equality—reflexive,
symmetric,transitive—converteasilyinto theoremsaboutcongruentsegmentsand angles.In the next
sectionwe’ll moveaheadinto new ground.Therewe’ll get to use all the toolsin our geometrytoolboxto
solveproblemsand to createnew theorems.


Pointsto Consider


We are aboutto transitionfrom introductoryconceptsthat are necessarybut not too “geometric”to the real
heartof geometry. We neededa certainamountof foundationmaterialbeforewe couldbeginto get into
moreunfamiliar, challengingconceptsand relationships.We havethe definitionsand postulates,and analogs
of the equalityproperties,as the foundation.Fromhere on out, we will be able to experiencegeometryon
a richerand deeperlevel.


LessonExercises


Provethe SegmentCongruenceProperties,in questions1-3.



  1. Reflexive:

  2. Symmetric:If , then


3.Transitive:If and , then



  1. Is the followingstatementtrue?If it’s not, give a counterexample.If it is, proveit.


If and , then + = +



  1. Give a reasonfor eachstatementin the proofbelow.

Free download pdf