CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 8. Systems and Matrices


x+ 2 y+ 3 z= 96
x+ 0 y+z= 36
0 x+ 2 y−z=− 12

By writing this system as a matrix equation you get:




1 2 3


1 0 1


0 2 − 1



·




x
y
z


=




96


36


− 12







x
y
z


=




96


36


− 12




If this were a normal linear equation where you had a constant times the variable equals a constant, you would
multiply both sides by the multiplicative inverse of the coefficient. Do the same in this case.


A−^1 ·A·




x
y
z


=A−^1 ·




96


36


− 12






x
y
z


=A−^1 ·




96


36


− 12




All that is left is for you to perform the matrix multiplication to get the solution. See Example B.
Example A
Show the steps for finding the inverse matrixAfrom the guidance section.
Solution:



1 2 3


1 0 1


0 2 − 1


∣∣


∣∣


∣∣


1 0 0


0 1 0


0 0 1





→ −I →





1 2 3


0 − 2 − 2


0 2 − 1


∣∣


∣∣


∣∣


1 0 0


−1 1 0


0 0 1






→ +II →




1 2 3


0 − 2 − 2


0 0 − 3


∣∣


∣∣


∣∣


1 0 0


−1 1 0


−1 1 1





→ ÷(− 2 ) →


→ ÷(− 3 ) →




1 2 3


0 1 1


0 0 1


∣∣


∣∣


∣∣


1 0 0


(^12) − (^120)
(^13) − (^13) − (^13)




→ − 3 III →


→ −III →





1 2 0


0 1 0


0 0 1


∣∣


∣∣


∣∣


01 1 1


61 −^1613


3 −^13 −^13




→ − 2 II →






1 0 0


0 1 0


0 0 1


∣∣


∣∣


∣∣


− 113 43 13


61 −^1613


3 −^13 −^13




The matrix on the right is the inverse matrixA−^1.


A−^1 =




−^134313


(^16) − (^1613)
(^13) − (^13) − (^13)




Example B
Solve the following system of equations using inverse matrices.

Free download pdf