CK-12-Pre-Calculus Concepts

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 2. Polynomials and Rational Functions



  1. Show howa^3 +b^3 factors by checking the result given in the guidance section.

  2. Factor the following expression without using the quadratic formula or trial and error:
    8 x^2 + 30 x+ 27
    Answers:

  3. Factoring,


a^3 −b^3 = (a−b)(a^2 +ab+b^2 )
=a^3 +a^2 b+ab^2 −a^2 b−ab^2 −b^3
=a^3 −b^3


  1. Factoring,


a^3 +b^3 = (a+b)(a^2 −ab+b^2 )
=a^3 −a^2 b+ab^2 +ba^2 −ab^2 +b^3
=a^3 +b^3


  1. Use the algorithm described in Example A.


8 x^2 + 30 x+ 27 →x^2 + 30 x+ 216
→(x+ 12 )(x+ 18 )

(


x+^128

)(


x+^188

)



(


x+^32

)(


x+^94

)


→( 2 x+ 3 )( 4 x+ 9 )

Practice


Factor each expression completely.



  1. 2x^2 − 5 x− 12

  2. 12x^2 + 5 x− 3

  3. 10x^2 + 13 x− 3

  4. 18x^2 + 9 x− 2

  5. 6x^2 + 7 x+ 2

  6. 8x^2 + 34 x+ 35

  7. 5x^2 + 23 x+ 12

  8. 12x^2 − 11 x+ 2
    Expand the following expressions. What do you notice?
    9.(a+b)(a^8 −a^7 b+a^6 b^2 −a^5 b^3 +a^4 b^4 −a^3 b^5 +a^2 b^6 −ab^7 +b^8 )

Free download pdf