compute.
LessonSummary
- We usedRiemannSumsto approximateareasundercurves.
- We evaluateddefiniteintegralsas limitsof RiemannSums.
ReviewQuestions
In problems#1–7, use RiemannSumsto approximatethe areasunderthe curves.
- Consider from to Use RiemannSumswith four subintervalsof equal
 lengths.Choosethe midpointsof eachsubintervalas the samplepoints.
- Repeatproblem#1 usinggeometryto calculatethe exactareaof the region underthe graphof
 from to (Hint:Sketcha graphof the regionand see if you can computeits
 area usingarea measurementformulasfrom geometry.)
- Repeatproblem#1 usingthe definitionof the definiteintegralto calculatethe exactarea of the region
 underthe graphof from to
- from to Use RiemannSumswith five subintervalsof equallengths.
 Choosethe left endpointof eachsubintervalas the samplepoints.
- Repeatproblem#4 usingthe definitionof the definiteintergalto calculatethe exactarea of the region
 underthe graphof from to
- Consider Computethe RiemannSum of on undereachof the followingsituations.
 In eachcase,use the right endpointas the samplepoints.
 a. Two sub-intervalsof equallength.
 b. Five sub-intervalsof equallength.
 c. Ten sub-intervalsof equallength.
d. Basedon your answersabove,try to guessthe exactarea underthe graphof on
- Considerf(x) = e^x. Computethe RiemannSumof f on [0, 1] undereachof the followingsituations.In
 eachcase,use the right endpointas the samplepoints.
 a. Two sub-intervalsof equallength.
 b. Five sub-intervalsof equallength.
 c. Ten sub-intervalsof equallength.
d. Basedon your answersabove,try to guessthe exactarea underthe graphof on
- Find the net area underthe graphof ; to (Hint:Sketchthe graphand
 checkfor symmetry.)
