CK12 Calculus - Single Variable

(Marvins-Underground-K-12) #1

Theorem(RemainderEstimation)


If |f(n+1)(x)| ≤Mfor |x-x 0 | ≤r, then we havethe followingboundforRn(x):


for |x-x 0 | ≤r.

Example 1 The functionexis equalto its Maclaurinseriesfor allx. Proof.Letf(x) =ex. We needto find
the aboveboundonRn(x).


If |x| ≤r,f(n)(x) =ex≤erforn≥ 0 and the remainderestimationgives for
|x| ≤r.


Since by the squeezeTheorem.


So. Henceexis equalto its Taylorseries for allx.


Example 2 (TruncationError)Whatis the truncationerrorof approximating by its third-
degreeMaclaurinpolynomialin for |x| ≤ 0.1.


Solution.


.

For.


So. This is the truncationerrorof approximatingby
the third-degreeMaclaurinpolynomial.
Exercise



  1. Find the powerseriesrepresentationoff(x) =sin xatx= 0 for allx. Why is it the Maclaurinseries?

  2. Find the powerseriesrepresentationoff(x) =cos xat for allx. Whyis it the Taylorseriesat

Free download pdf