CK12 Calculus - Single Variable

(Marvins-Underground-K-12) #1

Exercise



  1. Find a powerseriesrepresentationof atx= 0.

  2. Find a powerseriesrepresentationof atx= 0.

  3. Notice. Find a powerseriesrepresentationof at
    . In whatintervalis the equalitytrue?
    ChoosingCenters
    TaylorSeries(indeedTaylorpolynomialsof lowerdegrees)oftenprovidegoodapproximationof functions.
    However, the choiceof centercoulddetermine
    (1) whetherthe intendedvalueofxis insidethe intervalof convergence
    (2) rate of convergence,i.e. how manytermsto take to achieveprescribeddegreeof accuracy
    For frequentlyusedfunctions,the first choicemay be the standardcenter(see the list at the end of this
    section).
    Example 1 Approximateln0:99
    Solution.Since.99 is closeto the centerx= 1, we use the standardTaylorseriesforln(1 -x).


Thenwe may be able to deducea usefulTaylorSeriescenteredcloseto the givenx.
Example 2 Approximatesin(1.1) to 4 decimalplaces.


Since1.1 is closeto , we wouldtry to find a TaylorSeriesofsin xat. Letf(x) =sin x. Then

Free download pdf