CK-12-Calculus

(Marvins-Underground-K-12) #1

4.5. Evaluating Definite Integrals http://www.ck12.org


Using the limit definition we found that∫ 03 x^3 dx=^814 .We now can verify this using the theorem as follows:
We first note thatx^4 /4 is an antiderivative off(x) =x^3 .Hence we have


∫ 3
0 x

(^3) dx=x^4
4


] 3


0

=^814 −^04 =^814.


We conclude the lesson by stating the rules for definite integrals, most of which parallel the rules we stated for the
general indefinite integrals.


∫a
∫abf(x)dx=^0
a f(x)dx=−

∫a

∫b b f(x)dx
a k·f(x)dx=k

∫b

∫ a f(x)dx
b
a[f(x)±g(x)]dx=

∫b
a f(x)dx±

∫b
∫b a g(x)dx
a f(x)dx=

∫c
a f(x)dx+

∫b
c f(x)dxwherea<c<b.

Given these rules together with Theorem 4.1, we will be able to solve a great variety of definite integrals.
Example 2:
Compute∫−^22 (x−√x)dx.
Solution:


∫ 4
1 (x−

√x)dx=∫^4
1 xdx−

∫ 4
1

√xdx=x^2
2

] 4


1 −


2


3 x

32 ]^4


1 =


(


8 −^12


)


−^23 ( 8 − 1 ) =^152 −^143 =^176.


Example 3:


Compute∫


π 2
0 (x+cosx)dx.
Solution:


∫π 2
0 (x+cosx)dx=

∫π 2
0 (x)dx=

∫ π 2
0 (cosx)dx=

x^2
2

∣∣



π 2
0 +

sinx
1

∣∣



π 2
0 =

π^2
8 +^1 =

π^2 + 8
8.

Lesson Summary



  1. We used antiderivatives to evaluate definite integrals.

  2. We used the Mean Value Theorem for integrals to solve problems.

  3. We used general rules of integrals to solve problems.


Proof of Theorem 4.1

Free download pdf