CK-12-Calculus

(Marvins-Underground-K-12) #1

6.3. Differentiation and Integration of Logarithmic and Exponential Functions http://www.ck12.org


d
dx[b

u] =bu·lnb·du
dx.

And ifb=e,


d
dx[e

u] =eu·du
dx.

Derivatives of Exponential Functions


d
dx[b

u] =bu·lnb·du
dx=u

′bulnb
d
dx[e

u] =eu·du
dx=u

′eu

Example 9:
Find the derivative ofy= 2 x^2.
Solution:
Applying the rule for differentiating an exponential function,


y′= ( 2 x) 2 x^2 ln 2
= 2 x^2 +^1 ·x·ln 2.

Example 10:
Find the derivative ofy=ex^2.
Solution:
Since


d
dx[e

u] =u′eu,
y′= 2 xex^2.

Example 11:
Findf′(x)if


f(x) = √^1 πσe−αk(x−x^0 )^2.

whereσ,α,x 0 ,andkare constants andσ 6 = 0.
Solution:
We apply the exponential derivative and the Chain Rule:

Free download pdf