CK-12-Calculus

(Marvins-Underground-K-12) #1

7.3. Integration by Partial Fractions http://www.ck12.org


∫ x+ 1
(x+ 2 )^2 dx=

∫( 1


x+ 2 −

1


(x+ 2 )^2

)


=


∫ 1


x+ 2 dx−

∫ 1


(x+ 2 )^2 dx
=ln∣∣x+ 2 ∣∣+x+^12 +C,

where we have usedu−substitution for the second integral.
Example 3:


Evaluate∫^3 x 3 x+^2 + 2 x^3 x (^2) ++^1 xdx.
Solution:
We begin by factoring the denominator asx(x+ 1 )^2 .Then the partial fraction decomposition is
3 x^2 + 3 x+ 1
x^3 + 2 x^2 +x=


A


x+

B


x+ 1 +

C


(x+ 1 )^2.

Multiplying each side of the equation byx(x+ 1 )^2 we get the basic equation


3 x^2 + 3 x+ 1 =A(x+ 1 )^2 +Bx(x+ 1 )+Cx.

This equation is true for all values ofx.The most convenient values are the ones that make a factor equal to zero,
namely,x=−1 andx= 0.
Substitutingx=− 1 ,


3 (− 1 )^2 + 3 (− 1 )+ 1 =A(− 1 + 1 )^2 +B(− 1 )(− 1 + 1 )+C(− 1 )


1 = 0 + 0 −C


− 1 =C.


Substitutingx=0,


3 ( 0 )^2 + 3 ( 0 )+ 1 =A( 0 + 1 )^2 +B( 0 )( 0 + 1 )+C( 0 )


1 =A+ 0 + 0


1 =A.


To findBwe can simply substitute any value ofxalong with the values ofAandCobtained.
Choosex=1:


3 ( 1 )^2 + 3 ( 1 )+ 1 =A( 1 + 1 )^2 +B( 1 )( 1 + 1 )+C( 1 )


7 = 4 + 2 B− 1


2 =B.

Free download pdf