CK-12-Calculus

(Marvins-Underground-K-12) #1

7.3. Integration by Partial Fractions http://www.ck12.org


∫ 2
1

x^3 − 4 x^2 − 3 x+ 3
x^2 − 3 x dx=

∫ 2
1

[


(x− 1 )+−x (^26) −x+ 3 x^3


]


dx=

∫ 2
1

[


x− 1 −^1 x−x−^53

]


dx.

Integrating and substituting the limits,


=


[x 2
2 −x−ln

∣∣x∣∣−5ln∣∣x− 3 ∣∣]^2
1
=

( 4


2 −^2 −ln2−5ln1

)



( 1


2 −^1 −ln1−5ln2

)


=4ln2+^12.

Multimedia Links


For a complete partial fractions problem(19.0), see Integration by Partial Fractions, Just Math Tutoring (6:02)


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/599

and for integration using partial fractions and a rationalizing substitution(19.0), see Integration using Partial Fracti
ons and a rationalizing substitution, Just Math Tutoring (6:06).


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/600

For an extensive presentation on integrating with partial fractions including the completing the square technique
(19.0)see Integration with partial fractions using various techniques, MIT Courseware (51:24).


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/601
Free download pdf