7.3. Integration by Partial Fractions http://www.ck12.org
∫ 2
1
x^3 − 4 x^2 − 3 x+ 3
x^2 − 3 x dx=
∫ 2
1
[
(x− 1 )+−x (^26) −x+ 3 x^3
]
dx=
∫ 2
1
[
x− 1 −^1 x−x−^53
]
dx.
Integrating and substituting the limits,
=
[x 2
2 −x−ln
∣∣x∣∣−5ln∣∣x− 3 ∣∣]^2
1
=
( 4
2 −^2 −ln2−5ln1
)
−
( 1
2 −^1 −ln1−5ln2
)
=4ln2+^12.
Multimedia Links
For a complete partial fractions problem(19.0), see Integration by Partial Fractions, Just Math Tutoring (6:02)
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/599
and for integration using partial fractions and a rationalizing substitution(19.0), see Integration using Partial Fracti
ons and a rationalizing substitution, Just Math Tutoring (6:06).
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/600
For an extensive presentation on integrating with partial fractions including the completing the square technique
(19.0)see Integration with partial fractions using various techniques, MIT Courseware (51:24).
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/601