http://www.ck12.org Chapter 7. Integration Techniques
∫
cos^2 xdx=
∫ 1
2 (^1 +cos 2x)dx
=^12
∫
( 1 +cos 2x)dx
=^12
(
x+^12 sin 2x
)
+C
=x 2 +^14 sin 2x+C.
Example 2:
Evaluate∫cos^4 xdx.
Solution:
∫
cos^4 xdx=
∫
(cos^2 x)^2 dx=
∫( 1
2 (^1 +cos 2x)
) 2
dx
=^14
∫
( 1 +2 cos 2x+cos^22 x)dx
=^14
∫(
1 +2 cos 2x+^12 +^12 cos 4x
)
dx
=^14
∫( 3
2 +2 cos 2x+
1
2 cos 4x
)
dx.
Integrating term by term,
=^14
[ 3
2 x+sin 2x+
1
8 sin 4x
]
+C
=^38 x+^14 sin 2x+ 321 sin 4x+C.
Example 3:
Evaluate∫sin^3 xdx.
Solution:
∫
sin^3 xdx=
∫
sin^2 xsinxdx
Recall that sin^2 x+cos^2 x= 1 ,so by substitution,
=
∫
( 1 −cos^2 x)sinxdx
=
∫
sinxdx−
∫
cos^2 xsinxdx.
The first integral should be straightforward. The second can be done by the method ofu−substitution by letting
u=cosx,sodu=−sinxdx.The integral becomes