CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques



cos^2 xdx=

∫ 1


2 (^1 +cos 2x)dx
=^12


( 1 +cos 2x)dx
=^12

(


x+^12 sin 2x

)


+C


=x 2 +^14 sin 2x+C.

Example 2:
Evaluate∫cos^4 xdx.
Solution:



cos^4 xdx=


(cos^2 x)^2 dx=

∫( 1


2 (^1 +cos 2x)

) 2


dx

=^14


( 1 +2 cos 2x+cos^22 x)dx
=^14

∫(


1 +2 cos 2x+^12 +^12 cos 4x

)


dx

=^14

∫( 3


2 +2 cos 2x+

1


2 cos 4x

)


dx.

Integrating term by term,


=^14


[ 3


2 x+sin 2x+

1


8 sin 4x

]


+C


=^38 x+^14 sin 2x+ 321 sin 4x+C.

Example 3:
Evaluate∫sin^3 xdx.
Solution:



sin^3 xdx=


sin^2 xsinxdx

Recall that sin^2 x+cos^2 x= 1 ,so by substitution,


=



( 1 −cos^2 x)sinxdx
=


sinxdx−


cos^2 xsinxdx.

The first integral should be straightforward. The second can be done by the method ofu−substitution by letting
u=cosx,sodu=−sinxdx.The integral becomes

Free download pdf