CK-12-Calculus

(Marvins-Underground-K-12) #1

7.4. Trigonometric Integrals http://www.ck12.org


=−cosx−

∫ [


−u^2 sinxsindux

]


=−cosx+


u^2 du
=−cosx+u

3
3 +C
=−cosx+^13 cos^3 x+C.

Ifmandnare both positive integers, then an integral of the form



sinmxcosnxdx

can be evaluated by one of the procedures shown in the table below, depending on whethermandnare odd or even.


TABLE7.2:
∫sinmxcosnxdx Procedure Identities
nodd Letu=sinx cos^2 x= 1 −sin^2 x
modd Letu=cosx sin^2 x= 1 −cos^2 x
nandmeven Use identities to reduce powers sin^2 x= ( 1 / 2 )( 1 −cos 2x)
cos^2 x= ( 1 / 2 )( 1 +cos 2x)

Example 4:
Evaluate∫sin^3 xcos^4 xdx.
Solution:
Here,mis odd. So according to the second procedure in the table above, letu=cosx,sodu=−sinx.Substituting,



sin^3 xcos^4 xdx=


u^4 sin^3 xsin−^1 xdu
=−


u^4 sin^2 xdu.

Referring to the table again, we can now substitute sin^2 x= 1 −cos^2 xin the integral:


=−



u^4 ( 1 −cos^2 x)du
=−


u^4 ( 1 −u^2 )du
=


(−u^4 +u^6 )du
=− 51 u^5 +^17 u^7 +C
=−^15 cos^5 x+^17 cos^7 x+C.
Free download pdf