7.4. Trigonometric Integrals http://www.ck12.org
=−cosx−
∫ [
−u^2 sinxsindux
]
=−cosx+
∫
u^2 du
=−cosx+u
3
3 +C
=−cosx+^13 cos^3 x+C.
Ifmandnare both positive integers, then an integral of the form
∫
sinmxcosnxdx
can be evaluated by one of the procedures shown in the table below, depending on whethermandnare odd or even.
TABLE7.2:
∫sinmxcosnxdx Procedure Identities
nodd Letu=sinx cos^2 x= 1 −sin^2 x
modd Letu=cosx sin^2 x= 1 −cos^2 x
nandmeven Use identities to reduce powers sin^2 x= ( 1 / 2 )( 1 −cos 2x)
cos^2 x= ( 1 / 2 )( 1 +cos 2x)
Example 4:
Evaluate∫sin^3 xcos^4 xdx.
Solution:
Here,mis odd. So according to the second procedure in the table above, letu=cosx,sodu=−sinx.Substituting,
∫
sin^3 xcos^4 xdx=
∫
u^4 sin^3 xsin−^1 xdu
=−
∫
u^4 sin^2 xdu.
Referring to the table again, we can now substitute sin^2 x= 1 −cos^2 xin the integral:
=−
∫
u^4 ( 1 −cos^2 x)du
=−
∫
u^4 ( 1 −u^2 )du
=
∫
(−u^4 +u^6 )du
=− 51 u^5 +^17 u^7 +C
=−^15 cos^5 x+^17 cos^7 x+C.