CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques


Example 5:
Evaluate∫sin^4 xcos^4 xdx.
Solution:
Here,m=n= 4 .We follow the third procedure in the table above:



sin^4 xcos^4 xdx=


(sin^2 x)^2 (cos^2 x)^2 dx

=

∫[ 1


2 (^1 −cos 2x)

] 2 [ 1


2 (^1 +cos 2x)

] 2


dx

= 161


( 1 −cos^22 x)^2 dx
= 161


sin^42 xdx.

At this stage, it is best to useu−substitution to integrate. Letu= 2 x,sodu= 2 dx.



sin^4 xcos^4 xdx= 321


sin^4 udu

= 321


(sin^2 u)^2 du= 321

∫[ 1


2 (^1 −cos 2u)

] 2


du

= 321

( 3


8 u−

1


4 sin 2u+

1


32 sin 4u

)


+C


= 2563 x− 1281 sin 4x+ 10241 sin 8x+C.

Integrating Powers of Secants and Tangents


In this section we will study methods of integrating functions of the form



tanmxsecnxdx,

wheremandnare nonnegative integers. However, we will begin with the integrals



tanxdx

and



secxdx.

The first integral can be evaluated by writing

Free download pdf