CK-12-Calculus

(Marvins-Underground-K-12) #1

7.4. Trigonometric Integrals http://www.ck12.org



tanxdx=

∫ sinx
cosxdx.

Usingu−substitution, letu=cosx,sodu=−sinxdx.The integral becomes



tanxdx=

∫ sinx
u

− 1


sinx
du=−

∫ 1


udu=−ln|u|+C
=−ln|cosx|+C
=ln( 1 /|cosx|)+C
=ln|secx|+C.

The second integral∫secxdx, however, is not straightforward—it requires a trick. Let



secxdx=


secxsecsecxx++tantanxxdx

=

∫ sec (^2) x+secxtanx
secx+tanx dx.
Useu−substitution. Letu=secx+tanx,thendu= (sec^2 x+secxtanx)dx,the integral becomes,

secxdx=
∫ du
u
=ln|u|+C
=ln|secx+tanx|+C.
There are two reduction formulas that help evaluate higher powers of tangent and secant:

secnxdx=sec
n− (^2) xtanx
n− 1 +
n− 2
n− 1

secn−^2 xdx,

tanmxdx=tan
m− (^1) x
m− 1 −

tanm−^2 xdx.
Example 6:
Evaluate∫sec^3 xdx.
Solution:
We use the formula above by substituting forn= 3.

sec^3 xdx=sec 3 x−tan 1 x+^33 −−^21

secxdx
=^12 secxtanx+^12

secxdx
=^12 secxtanx+^12 ln|secx+tanx|+C.

Free download pdf