CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques


Example 7:
Evaluate∫tan^5 xdx.
Solution:
We use the formula above by substituting form= 5.



tan^5 xdx=tan

(^4) x
4 −

tan^3 xdx.
We need to use the formula again to solve the integral∫tan^3 xdx:

tan^5 xdx=tan
(^4) x
4 −

tan^3 xdx
=tan
(^4) x
4 −
[tan (^2) x
2 −

tanxdx


]


=^14 tan^4 x−^12 tan^2 x−ln|cosx|+C.

Ifmandnare both positive integers, then an integral of the form



tanmxsecnxdx

can be evaluated by one of the procedures shown in the table below, depending on whethermandnare odd or even.


TABLE7.3:
∫tanmxsecnxdx Procedure Identities
neven Letu=tanx sec^2 x=tan^2 x+ 1
modd Letu=secx tan^2 x=sec^2 x− 1
meven
nodd

Reduce powers of secx tan^2 x=sec^2 x− 1

Example 8:
Evaluate∫tan^2 xsec^4 xdx.
Solution:
Heren=4 is even, and so we will follow the first procedure in the table above. Letu=tanx,sodu=sec^2 xdx.
Before we substitute, split off a factor of sec^2 x.



tan^2 xsec^4 xdx=


tan^2 xsec^2 xsec^2 xdx.

Since sec^2 x=tan^2 x+ 1 ,


=



tan^2 x(tan^2 x+ 1 )sec^2 xdx.
Free download pdf