CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques


since


cotθ=cossinθθ.

so that


∫ dx
x^2 √ 4 −x^2 =−

1


4 cotθ+C
=−^14


4 −x^2
x +C.

Example 2:


Evaluate∫


√x (^2) − 3
x dx.
Solution:
Again, we want to first to eliminate the radical. Consult the table above and substitutex=



√ 3 secθ. Thendx=
3 secθtanθdθ. Substituting back into the integral,


∫ √x (^2) − 3
x dx=
∫ √3 sec (^2) θ− 3
√3 secθ



3 secθtanθdθ
=


3



tan^2 θdθ.

Using the integral identity from the section on Trigonometric Integrals,



tanmxdx=tan

m− (^1) x
m− 1 −

tanm−^2 xdx.
and lettingm=2 we obtain
∫ √x (^2) − 3
x dx=
√ 3 ((tanθ)−θ)+C.
Looking at the triangles above, the third triangle represents our case, witha=




  1. Sox=



3 secθand thus
cosx=



3 /x, which gives tanθ=


x^2 − 3 /



  1. Substituting,


∫ √x (^2) − 3
x dx=
√ 3 ((tanθ)−θ)+C


=√ 3


(√


x√^2 − 3
3 −tan

− 1

(√


x√^2 − 3
3

))


+C


=



x^2 − 3 −√3 tan−^1

(√


x√^2 − 3
3

)


+C.

Free download pdf