7.5. Trigonometric Substitutions http://www.ck12.org
Example 3:
Evaluate∫x 2 √xdx (^2) + 1.
Solution:
From the table above, letx=tanθthendx=sec^2 θdθ.Substituting into the integral,
∫ dx
x^2 √x^2 + 1 =
∫ sec (^2) θdθ
tan^2 θ√tan^2 θ+ 1.
But since tan^2 θ+ 1 =sec^2 θ,
=
∫ sec (^2) θdθ
tan^2 θsecθ
∫ secθ
tan^2 θdθ
∫ 1
cosθ
cos^2 θ
sin^2 θdθ
=
∫
cotθcscθdθ.
Sinceddθ(cscθ) =−cotθcscθ,
∫ dx
x^2 √x^2 + 1 =
∫
cotθcscθdθ
=−cscθ+C.
Looking at the triangles above, the first triangle represents our case, witha= 1 .Sox=tanθand thus sinx=
√ x
1 +x^2 ,which gives cscθ=
√
1 +x x^2 .Substituting,
∫ dx
x^2 √x^2 + 1 =−cscθ+C
=−
√ 1 +x 2
x +C.
Multimedia Links
For video presentations on Trigonometric Substitutions(17.0), see Trigonometric Substitutions, Just Math Tutoring
(9:30)
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/608