CK-12-Calculus

(Marvins-Underground-K-12) #1

7.5. Trigonometric Substitutions http://www.ck12.org


Example 3:


Evaluate∫x 2 √xdx (^2) + 1.
Solution:
From the table above, letx=tanθthendx=sec^2 θdθ.Substituting into the integral,
∫ dx
x^2 √x^2 + 1 =
∫ sec (^2) θdθ
tan^2 θ√tan^2 θ+ 1.
But since tan^2 θ+ 1 =sec^2 θ,


=


∫ sec (^2) θdθ
tan^2 θsecθ


∫ secθ
tan^2 θdθ


∫ 1


cosθ

cos^2 θ
sin^2 θdθ
=


cotθcscθdθ.

Sinceddθ(cscθ) =−cotθcscθ,


∫ dx
x^2 √x^2 + 1 =


cotθcscθdθ
=−cscθ+C.

Looking at the triangles above, the first triangle represents our case, witha= 1 .Sox=tanθand thus sinx=
√ x
1 +x^2 ,which gives cscθ=



1 +x x^2 .Substituting,

∫ dx
x^2 √x^2 + 1 =−cscθ+C
=−

√ 1 +x 2
x +C.

Multimedia Links


For video presentations on Trigonometric Substitutions(17.0), see Trigonometric Substitutions, Just Math Tutoring
(9:30)


MEDIA


Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/608
Free download pdf