CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 7. Integration Techniques


So the volume of the solid isπ/ 4.
Example 6:
Evaluate∫−+∞∞ex+dxe−x.
Solution:
This can be a tough integral! To simplify, rewrite the integrand as


1


ex+e−x=

1


e−x(e^2 x+ 1 )=

ex
e^2 x+ 1 =

ex
1 +(ex)^2.

Substitute into the integral:


∫ dx
ex+e−x=

∫ ex
1 +(ex)^2 dx.

Usingu−substitution, letu=ex,du=exdx.


∫ dx
ex+e−x=

∫ du
1 +u^2
=tan−^1 u+C
=tan−^1 ex+C.

Returning to our integral with infinite limits, we split it into two regions. Choose as the split point the convenient
x= 0.


∫+∞
−∞

dx
ex+e−x=

∫ 0
−∞

dx
ex+e−x+

∫+∞
0

dx
ex+e−x.

Taking each integral separately,


∫ 0
−∞

dx
ex+e−x=l→−lim∞

∫ 0
l

dx
ex+e−x
=l→−lim∞[tan−^1 ex]^0 l
=l→−lim∞

[


tan−^1 e^0 −tan−^1 el

]


=π 4 − 0
=π 4.

Similarly,

Free download pdf