7.6. Improper Integrals http://www.ck12.org
∫+∞
0
dx
ex+e−x=llim→∞
∫ 1
0
dx
ex+e−x
=llim→∞[tan−^1 ex]l 0
=llim→∞
[
tan−^1 el−tan−^11
]
=π 2 −π 4 =π 4.
Thus the integral converges to
∫+∞
−∞
dx
ex+e−x=
π
4 +
π
4 =
π
2.
Multimedia Links
For a video presentation of Improper Integrals(22.0), see Improper Integrals, http://www.justmathtutoring.com (6:23).
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/610
For a video presentation of Improper Integrals with Infinity in the Upper and Lower Limits(22.0), see Improper Int
egrals, http://www.justmathtutoring.com (7:55).
MEDIA
Click image to the left for use the URL below.
URL: http://www.ck12.org/flx/render/embeddedobject/611
Review Questions
- Determine whether the following integrals are improper. If so, explain why.
a.∫ 17 xx−+^23 dx
b.∫ 17 xx++^23 dx
c.∫ 01 lnxdx
d.∫ 0 ∞√x^1 − 2 dx