CK-12-Calculus

(Marvins-Underground-K-12) #1

http://www.ck12.org Chapter 8. Infinite Series



  1. The series∑∞k= 1 (−^1 k)!k+^1 converges according to the Alternating Series Test. Let∑∞k= 1 (−^1 k)!k+^1 =S. Computes 4
    for∑k∞= 1 (−^1 k)!k+^1 and determine the bound on|s 4 −S|.


The series∑∞k= 1 (−^1 k)k+^1 converges according to the Alternating Series Test. Let∑∞k= 1 (−^1 k)k+^1 =S. Find the least value
ofnsuch that:


6.

∣∣


∣∑nk= 1 (−^1 k)k+^1 −S

∣∣


∣< 0. 05


7.


∣∣


∣∑nk= 1 (−^1 k)k+^1 −S

∣∣


∣<^0.^005


8.


∣∣


∣∑nk= 1 (−^1 k)k+^1 −S

∣∣


∣<^0.^0001


Determine if each series converges absolutely, converges conditionally, or diverges.


9.∑∞k= 1 (− 1 )k+^132 kk
10.∑k∞= 1 (− 21 k 2 )k++ 21 k
11.∑∞k= 1 (− 74 k)k 2 +^1
12.∑∞k= 1 (−^1 k) 72 k+^1

Keywords



  1. alternating series

  2. alternating harmonic series

  3. alternating geometric series

  4. alternatingp−series

  5. Alternating Series Test

  6. Alternating Series Remainder

  7. conditional convergence

  8. absolute convergence

  9. rearrangement

Free download pdf