http://www.ck12.org Chapter 8. Infinite Series
- The series∑∞k= 1 (−^1 k)!k+^1 converges according to the Alternating Series Test. Let∑∞k= 1 (−^1 k)!k+^1 =S. Computes 4
for∑k∞= 1 (−^1 k)!k+^1 and determine the bound on|s 4 −S|.
The series∑∞k= 1 (−^1 k)k+^1 converges according to the Alternating Series Test. Let∑∞k= 1 (−^1 k)k+^1 =S. Find the least value
ofnsuch that:
6.
∣∣
∣∑nk= 1 (−^1 k)k+^1 −S
∣∣
∣< 0. 05
7.
∣∣
∣∑nk= 1 (−^1 k)k+^1 −S
∣∣
∣<^0.^005
8.
∣∣
∣∑nk= 1 (−^1 k)k+^1 −S
∣∣
∣<^0.^0001
Determine if each series converges absolutely, converges conditionally, or diverges.
9.∑∞k= 1 (− 1 )k+^132 kk
10.∑k∞= 1 (− 21 k 2 )k++ 21 k
11.∑∞k= 1 (− 74 k)k 2 +^1
12.∑∞k= 1 (−^1 k) 72 k+^1
Keywords
- alternating series
- alternating harmonic series
- alternating geometric series
- alternatingp−series
- Alternating Series Test
- Alternating Series Remainder
- conditional convergence
- absolute convergence
- rearrangement