http://www.ck12.org Chapter 8. Infinite Series
ex
x=
e·eu
1 +u=e·
1
1 +u
∞
n∑= 0
(u)n
n!
=e( 1 −u+u^2 −u^3 +...)
(
1 +u+u
2
2!+
u^3
3!+
u^4
2!+...
)
=e
(
1 +^12 u^2 −^13 u^3 +^38 u^4 −^1130 u^5 +...
)
for|u|< 1
so∫exxdx=e(u+^16 u^3 − 121 u^4 + 403 u^5 − 18011 u^6 +...)whereu=x− 1
Example 2Find the power series representation of∫sinxx^2 dx
Solution. Direct substitution ofx^2 in the Maclaurin Series of sinxgives sinx^2 =∑n∞= (^0) ( 2 (−n+^11 )n)!(x^2 )^2 n+^1 andsinxx^2 =
∑n∞= (^0) (( 2 −n+^1 ) 1 n)!x^4 n+^1
So
∫ sinx 2
x dx=
∞
n∑= 0
(− 1 )n
( 2 n+ 1 )!
∫
x^4 n+^1 dx
∞
n∑= 0
(− 1 )n
( 2 n+ 1 )!
x^4 n+^2
4 n+ 2 =
∞
n∑= 0
(− 1 )n
( 4 n+ 2 )
x^4 n+^2
( 2 n+ 1 )!
Exercises
- Find the power series representation (Maclaurin Series) of∫ex^2 dxand approximate
∫^1
0
ex^2 dxto 6 decimal
places.
- Find the power series representation (Maclaurin Series) of∫sinx^2 dx.
Frequently Used Maclaurin Series
Some frequently used Maclaurin Series are listed below
1 −^1 x=∑∞n=^0 xn in(−^1 ,^1 )
( 1 −^1 x)^2 =∑∞n=^1 nxn−^1 in(−^1 ,^1 )
ex=∑∞n= 0 xnn! in(− 1 , 1 )
ln( 1 −x) =−∑∞n= 1 xnn, in(− 1 , 1 )
ln( 1 +x) =∑∞n= 1 (− 1 )n+^1 xnn, in(− 1 , 1 )
sinx=∑n∞= 0 (−( 21 n)n+x 12 n)+!^1 in(− 1 , 1 )
cosx=∑n∞= 0 (−(^12 )nn)x!^2 n in(− 1 , 1 )
tan−^1 x=∑∞n= 0 (−(^12 )nn+x^21 n)+^1 in(− 1 , 1 )