CK-12-Calculus

(Marvins-Underground-K-12) #1

8.8. Calculations with Series http://www.ck12.org


ex
x =

e·eu
1 +u=e·

1


1 +u


n∑= 0

(u)n
n!
=e( 1 −u+u^2 −u^3 +...)

(


1 +u+u

2
2!+

u^3
3!+

u^4
2!+...

)


=e

(


1 +^12 u^2 −^13 u^3 +^38 u^4 −^1130 u^5 +...

)


for|u|< 1

so
∫ex
xdx=e


(u+ 1
6 u^3 − 121 u^4 + 403 u^5 − 18011 u^6 +...

)whereu=x− 1

Example 2Find the power series representation of∫sinxx^2 dx
Solution. Direct substitution ofx^2 in the Maclaurin Series of sinxgives


sinx^2 =∑∞n= (^0) ( 2 (−n+^1 ) 1 n)!(x^2 )^2 n+^1 andsinxx^2 =∑n∞= (^0) ( 2 (−n+^1 ) 1 n)!x^4 n+^1
So
∫ sinx 2
x dx=

n∑= 0
(− 1 )n
( 2 n+ 1 )!

x^4 n+^1 dx



n∑= 0
(− 1 )n
( 2 n+ 1 )!
x^4 n+^2
4 n+ 2 =

n∑= 0
(− 1 )n
( 4 n+ 2 )
x^4 n+^2
( 2 n+ 1 )!
Exercises



  1. Find the power series representation (Maclaurin Series) of∫ex^2 dxand approximate
    ∫^1
    0


ex^2 dxto 6 decimal
places.


  1. Find the power series representation (Maclaurin Series) of∫sinx^2 dx.


Frequently Used Maclaurin Series


Some frequently used Maclaurin Series are listed below


1 −^1 x=∑∞n=^0 xn in(−^1 ,^1 )
( 1 −^1 x)^2 =∑∞n=^1 nxn−^1 in(−^1 ,^1 )
ex=∑∞n= 0 xnn! in(− 1 , 1 )
ln( 1 −x) =−∑∞n= 1 xnn, in(− 1 , 1 )
ln( 1 +x) =∑∞n= 1 (− 1 )n+^1 xnn, in(− 1 , 1 )
sinx=∑n∞= 0 (−( 21 n)n+x 12 n)+!^1 in(− 1 , 1 )
cosx=∑n∞= 0 (−(^12 )nn)x!^2 n in(− 1 , 1 )
tan−^1 x=∑∞n= 0 (−(^12 )nn+x^21 n)+^1 in(− 1 , 1 )
Free download pdf