http://www.ck12.org Chapter 6. Polygons and Quadrilaterals
Exterior Angle Sum Theorem:The sum of the exterior angles of any polygon is 360◦.
Proof of the Exterior Angle Sum Theorem
Given: Anyn−gon withnsides,ninterior angles andnexterior angles.
Prove:nexterior angles add up to 360◦
NOTE: The interior angles arex 1 ,x 2 ,...xn.
The exterior angles arey 1 ,y 2 ,...yn.
TABLE6.2:
Statement Reason
- Anyn−gon withnsides,ninterior angles andn
exterior angles.
Given
2.x◦nand y◦nare a linear pair Definition of a linear pair
3.x◦nand y◦nare supplementary Linear Pair Postulate
4.x◦n+y◦n= 180 ◦ Definition of supplementary angles
5.(x◦ 1 +x 2 ◦+...+x◦n)+(y◦ 1 +y◦ 2 +...+y◦n) = 180 ◦n Sum of all interior and exterior angles in ann−gon
6.(n− 2 ) 180 ◦= (x◦ 1 +x◦ 2 +...+x◦n) Polygon Sum Formula
- 180◦n= (n− 2 ) 180 ◦+(y◦ 1 +y◦ 2 +...+y◦n) Substitution PoE
- 180◦n= 180 ◦n− 360 ◦+(y◦ 1 +y◦ 2 +...+y◦n) Distributive PoE
- 360◦= (y◦ 1 +y◦ 2 +...+y◦n) Subtraction PoE
Example 5:What isy?
Solution:yis an exterior angle, as well as all the other given angle measures. Exterior angles add up to 360◦, so set
up an equation.