http://www.ck12.org Chapter 6. Polygons and Quadrilaterals
16.
17.
For questions 18-21, determine what type of quadrilateralABCDis.ABCDcould be any quadrilateral that we have
learned in this chapter. If it is none of these, writenone.
18.A( 1 ,− 2 ),B( 7 ,− 5 ),C( 4 ,− 8 ),D(− 2 ,− 5 )
19.A( 6 , 6 ),B( 10 , 8 ),C( 12 , 4 ),D( 8 , 2 )
20.A(− 1 , 8 ),B( 1 , 4 ),C(− 5 ,− 4 ),D(− 5 , 6 )
21.A( 5 ,− 1 ),B( 9 ,− 4 ),C( 6 ,− 10 ),D( 3 ,− 5 )
22.A(− 2 , 2 ),B( 0 , 1 ),C( 2 , 2 ),D( 1 , 5 )
23.A(− 7 , 4 ),B(− 4 , 4 ),C( 0 , 0 ),D( 0 ,− 3 )
24.A( 3 , 3 ),B( 5 ,− 1 ),C( 7 , 0 ),D( 5 , 4 )
25.A(− 4 , 4 ),B(− 1 , 2 ),C( 2 , 4 ),D(− 1 , 6 )
- Write a two-column proof of Theorem 6-22.Given:KE∼=T EandKI∼=T IProve:EIis the angle bisector of
(^6) KETand (^6) KIT
- Write a two-column proof of the Kite Diagonal Theorem.Given:EK∼=ET,KI∼=ITProve:KT⊥EI
?Use the hint given earlier in this section.
- Write a two-column proof of the Isosceles Trapezoid Diagonals Theorem using congruent triangles. Given:
T RAPis an isosceles trapezoid withT R||AP.Prove:T A∼=RP