6.6. Trapezoids http://www.ck12.org
T RAPis an isosceles trapezoid. So,m^6 R= 115 ◦. To findm^6 A, set up an equation.
115 ◦+ 115 ◦+m^6 A+m^6 P= 360 ◦
230 ◦+ 2 m^6 A= 360 ◦→m^6 A=m^6 P
2 m^6 A= 130 ◦
m^6 A= 65 ◦
Notice thatm^6 R+m^6 A= 115 ◦+ 65 ◦= 180 ◦. These angles will always be supplementary because of the Consecutive
Interior Angles Theorem. Therefore, the two angles along the same leg (or non-parallel side) are always going to be
supplementary. Only in isosceles trapezoids will opposite angles also be supplementary.
Example B
Write a two-column proof.
Given: TrapezoidZOIDand parallelogramZOIM
(^6) D∼= (^6) I
Prove:ZD∼=OI
TABLE6.8:
Statement Reason
- TrapezoidZOIDand parallelogramZOIM,^6 D∼=^6 I Given
2.ZM∼=OI Opposite Sides Theorem
3.^6 I∼=^6 ZMD Corresponding Angles Postulate
4.^6 D∼=^6 ZMD Transitive PoC
5.ZM∼=ZD Base Angles Converse
6.ZD∼=OI Transitive PoC