8.10. Laws of Sines and Cosines http://www.ck12.org
sin 57◦
a=
sin 85◦
b=
sin 38◦
12sin 57◦
a=
sin 38◦
12sin 85◦
b=
sin 38◦
12
a·sin 38◦= 12 ·sin 57◦ b·sin 38◦= 12 ·sin 85◦a=
12 ·sin 57◦
sin 38◦≈ 16. 4 b=
12 ·sin 85◦
sin 38◦≈ 19. 4
Example B
Solve the triangle using the Law of Sines. Round decimal answers to the nearest tenth.
Set up the ratio for^6 Busing Law of Sines.
sin 95◦
27=
sinB
16
27 ·sinB= 16 ·sin 95◦sinB=
16 ·sin 95◦
27
→sin−^1(
16 ·sin 95◦
27)
= 36. 2 ◦
To findm^6 Cuse the Triangle Sum Theorem.m^6 C+ 95 ◦+ 36. 2 ◦= 180 ◦→m^6 C= 48. 8 ◦
To findc, use the Law of Sines again.sin 95
◦
27 =
sin 48. 8 ◦
cc·sin 95◦= 27 ·sin 48. 8 ◦c=27 ·sin 48. 8 ◦
sin 95◦≈ 20. 4
Example C
Solve the triangle using Law of Cosines. Round your answers to the nearest hundredth.