Pr act i ce an d Pr o b l em - So l v i n g Ex er ci ses ^ pr actIos
Practice Solve each inequality. Check your solutions. See Problem 1.
- 5/+7 <22 10. 6«-3>-18 11. -5y-2<8
- 6-3p>-9 13. 9<-12 + 6 r 14. 6 < 1 2 + 4;
Write and solve an inequality. ^ See Problem 2.
- Fam i l y Tr i p On a trip from Buffalo, New York, to St. Augustine, Florida, a family
w ants to travel at least 250 m i in th e first 5 h of driving. W hat should th eir average
speed be in o rder to m eet this goal? - Geo m et r y An isosceles triangle has at least two co n g ru en t sides. The p erim e te r of
a certain isosceles triangle is at m ost 12 in. The length of each of the two congruent
sides is 5 in. W hat are the possible lengths of th e rem aining side?
Solve each inequality. ^ See Problems 3 and 4.
- 3{k-5) + 9k> -3 18. -(7 c- 18) - 2c > 0 19. -3{j + 3) + 9; < -15
- -4 < 4(6y — 12) - 2y 21. 30 > -(5 z+ 15) + lOz 22. -4(d + 5) - 3d > 8
- 4x + 3 < 3x + 6 24. 4v + 8 > 6 c + 10 25. 5/+ 8 > 2 + 6 /
- 6-3p<4-p 27. 3m -4 < 6 m + 11 28. 41 + 17 > 7 + 5f
Solve each inequality, if possible. If the inequality has no solution, write no ^ See Problem 5.
sol ut i on. If the solutions are all real numbers, write al l real numbers.
- -3{w — 3) > 9 - 3w 30. - 5 r + 6 < - 5 ( r + 2) 31. -2(6 + s) >-15 - 2s
- 9 + 2x < 7 + 2(x - 3) 33. 2{n - 8 ) < 16 + 2n 34. 6w - 4 < 2(3w + 6 )
Apply Solve each inequality, if possible. If the inequality has no solution, write no
solution. If the solutions are all real numbers, write all real numbers.
- 3 ( x - 3) > 5 - 4x 36. 3s + 6 < - 5 ( s + 2) 37. 3(2 + t) > 15 - 2t
- |s - 3 < s + | - |s 39. 4 - 2n < 5 — n + 1 40. -2 (0 .5 - 4f) > - 3 ( 4 - 3.51)
- 4(a —2) — 6 «< —9 42. 4(3n - 1) > 2(n + 3) 43. 17 - (4ifc - 2) > 2{k + 3)
- Thi nk Ab o u t a Pl an Your cell p h o n e p lan costs $39.99 p er m o n th plus $.15 for each
text m essage you sen d or receive. You have at m ost $45 to sp en d on your cell p h o n e
bill. W hat is th e m axim um n u m b e r of text m essages th a t you can sen d or receive
next month?
- W hat inform ation do you know? W hat inform ation do you need?
- W hat inequality can you use to find th e m axim um n u m b e r of text m essages th at
you can send or receive? - W hat are th e solutions of th e inequality? Are they reasonable?
190 Ch ap t er 3 So l v i n g I n e q u a l i t i e s