Ch ap t er Rev i ew
Co n n ect in g B I O i d eas an d A n sw er i n g t he Essent ial Qu est i o n s
1 Variable
You can use algebraic
inequalities to represent
relationships between
quantities that are not equal.
Inequalities and Their Graphs
(Lessons 3-1, 3-2, 3-3, 3-4, 3-6, 3-7)
c> -2
-*— I—• I I------ 1 ------
-3 -2 -1 0 1 2
2 Equivalence
You can represent an
in e q u a lity in m any ways.
Equivalent representations
have the same solutions as
the original inequality.
Solving One-Step Inequalities
(Lessons 3-2, 3-3)
The inequalities in each pair are equivalent.
f- 4 > - 3 6y < 24
1 y < 4
3 S o lv in g E q u atio n s
and Inequalities
You can use properties o f
in e q u a lity to tra n sfo rm an
inequality into equivalent,
simpler inequalities and then
find solutions.
Solving Multi-Step Inequalities
(Lesson 3-4)
7z + 10<24
7z + 1 0 - 1 0 < 2 4 - 1 0
7z<14
7z < 14
7 ~ 7
z<2
Solving Compound and
Absolute Value Inequalities
(Lessons 3-6, 3-7)
13/ 7? + 2 | < 1 4
-1 4 < 3m + 2 <14
-1 6 < 3m <12
16
'3 m
Ch ap t er V o c a b u l a r y
» c o m p le m e n t o f a s e t (p. 196)
> c o m p o u n d i n e q u a l i t y ( p. 2 0 0 )
> d i s j o i n t s e t s ( p. 2 1 5 )
’ e m p t y s e t ( p. 1 9 5 )
- equivalent inequalities (p. 171)
- intersection (p. 215)
- interval n o tation (p. 203)
- roster fo rm (p. 194)
Choose the correct term to complete each sentence.
- The set {5,10,15,20, ... } re p r e s e n ts th e m u lt ip le s o f 5 w r it t e n i n ?.
- T h e ? o f t w o o r m o r e se ts is th e s e t t h a t c o n t a in s a ll e le m e n ts o f th e sets.
- The set that contains no elem ents is the?.
- The J_ is a n u m b e r t h a t m a k e s th e in e q u a l i t y tr u e.
- The in e q u a litie s 6 a > 12 a n d a > 2 a re ?.
> s e t - b u i l d e r n o t a t i o n ( p. 1 9 4 )
> s o l u t i o n o f a n i n e q u a l i t y ( p. 1 6 5 )
’ u n i o n ( p. 2 1 4 )
1 u n i v e r s a l s e t ( p. 1 9 6 )
Chapter 3 Chapter Review