3-1 In eq u al i t i es an d Th ei r Gr ap h s
Quick Review
A solution of an inequality is a n y n u m b e r t h a t m a k e s
th e in e q u a lity tru e. You can in d ic a te a ll th e s o lu tio n s o f
a n i n e q u a lit y o n th e g r a p h. A c lo s e d d o t i n d ic a t e s t h a t
the e n d p o in t is a so lu tio n. A n o p e n d o t in d ica te s th a t the
e n d p o in t is not a s o l u t i o n.
Ex e r c i se s
Graph each inequality.
- x > 5
- h<-1
- 10 > p
- r< 3.2
Write an inequality for each graph.
-7 -6 -5 -4 -3 -2 -1
3-2 Solving Inequalities Using Addition or Subtraction
Quick Review Ex e r c i se s
You can use the addition and subtraction properties Solve each inequality. Graph your solutions.
of inequality to transform an inequality into a simpler, 15 i,, + 5 > Q
equivalent inequality.^1 J • tv J / Zt
- i; — 6 < 4
Ex a m p l e 15. -4 < t+ 8
What are the solutions of x + 4 ^ 5?
16- n ~ \ — \
x+425 17. 22.3 < 13.7 + h
x + 4 - 4<5-4 Subtract 4 from each side. 18. q + 0.5 > —2
x ^ 1 Simplify.
- Allow ance You have at m ost $15.00 to spend. You
w a n t t o b u y a u s e d C D t h a t c o s ts $ 4 .2 5. W r it e a n d
s o lv e a n in e q u a l i t y t o f i n d t h e p o s s ib le a d d it io n a l
am ounts you can spend.
| C h a p t e r 3 C h a p t e r R e v ie w J 2 2 3