Step 1
W hich v a r ia b le is th e
dependent variable?
The perimeter depends
on the number of
rectangles, so perimeter
is the dependent variable.
M a k e a t a b le. U s e x as th e
in d e p e n d e n t va ria b le a n d y
as th e d e p e n d e n t v a ria b le.
Let x = the num ber o f rectangles.
Let y = the p e rim e te r o f the figure.
W r it e e a c h p a i r o f i n p u t a n d o u t p u t
values x a n d y as a n o r d e r e d p a ir
(x,y)-
1
2
3
4
2(1) + 2(6) = 14
2(2) + 2(6) = 16
2(3) + 2(6) = 18
2(4) + 2(6) = 20
(1, 14)
( 2 , 16 )
(3, 18)
(4, 20)
Step 2
Step 3
L o o k f o r a p a t t e r n i n t h e ta b le. D e s c r ib e t h e p a t t e r n i n w o r d s so y o u c a n w r it e
a n e q u a t io n t o r e p r e s e n t t h e r e la t io n s h ip.
Words Multiply the number of rectangles in each figure by 2 to get the
t o t a l le n g t h o f t h e t o p a n d b o t t o m s id e s o f t h e c o m b in e d fig u r e.
T h e n a d d 2 (6 ), o r 12, f o r t h e t o t a l le n g t h o f th e le f t a n d r i g h t s id e s
o f th e c o m b in e d f ig u r e t o g e t t h e e n t ir e p e r im e te r.
Equation y = 2x + 12
Use the table to make a graph.
W i t h a g ra p h , y o u c a n see a p a t t e r n
fo rm e d by the re la tio n sh ip betw een the
num ber of rectangles and the perim eter
of the combined figure.
24
16
8
0
Use th e y-axis fo r the
d e pend ent variable.
0 1 2 3 4
Use th e x-axis fo r the
Go t I t? 1. a. I n t h e d ia g r a m b e lo w , w h a t is th e independent variable.
re la tio n sh ip betw een the n u m b e r
o f t r ia n g le s a n d t h e p e r im e t e r o f t h e f ig u r e t h e y f o r m? R e p r e s e n t t h is
relationship using a table, w ords, an equation, and a graph.
4 4 4
2 tria n g le s 3 tria n g le s 4 tria n g le s
b. R e a so n in g S u p p o s e y o u k n o w th e p e r im e t e r o f n tria n g le s. W h a t w o u ld
you do to find the perim eter o f n + 1 triangles?
c. H o w d o e s y o u r a n s w e r to p a r t ( b ) r e la te to th e e q u a tio n y o u w r o te i n p a r t (a)?
You can describe the relationship in Problem 1 by saying
t h a t t h e p e r im e t e r is a f u n c t i o n o f th e n u m b e r o f re c ta n g le s.
A fu n ctio n is a r e la t io n s h ip t h a t p a ir s e a c h i n p u t v a lu e w i t h
exactly one output value.
Y o u h a v e s e e n t h a t o n e w a y t o r e p r e s e n t a f u n c t i o n is w i t h
a graph. A lin ea r fu n c tio n is a fu n c tio n w h o s e g ra p h is a
n o n v e r t ic a l l in e o r p a r t o f a n o n v e r t ic a l lin e.
Input
(independent
variable)
yzi_
Function (exactly
one output
per input)
Ly
r\
Output
(dependent
variable)
PowerAlgebra.com Lesson 4-2 Patterns and Linear Functions^241