Pr act i ce an d Pr o b l em - So l v i n g Ex er ci ses
Practice Multiply.
MATHEMATICAL
PRACTICES
11 i i. - 3
- m
17.
5x
12
m
m + 2 m — 1
4c c2 +3c + 2
2 c + 2 c-^1
20. m -^2 • 2m ---+ 6
3m + 9 2m — 4
{t 2 - t - 6)
26.
t-3
2y+ 9
4y + 12 (y 2 + y - 6 )
12.
15.
18.
21.
24.
27.
3 4
t ’ t
2 x x — 1
x + 1 3
b 2 + 4b+ 4 3b-6
2 b 2 - 8 4b
t 2 -t-12 t+ 1
t + 1
2 m + 1
Find the reciprocal of each expression.
29.x + 1
Divide.
32.
35.
38.
30.
3m — 6
h- 1 ,
6 h + 3 ‘
—6 d2
2d-5
t + 3
(9m2 - 36)
(2h2 + 9h + 4)
x - 1. x + 3
X + 4 ' x + 4 33.
y — 4 4 — y
10 ' 5 36.
3x + 9.
x • ( * + 3 ) 39.
3t + 12. t + 4
5t ' lOf
x2 + 6x + 8. x + 4
x 2 + x — 2
life + 121
I k - 15
2x + 4
(fc+ 11 )
Simplify each complex fraction.
4b - 1
13.
16.
19.
22.
See Problems 1,2, and 3.
5 t
3 a 2 a 3
6x2 2
5 * x + 1
r 2 + 5r + 6 r - 2
2 r
4x+ 1
5x+ 10
- (x2 - 1)
r+ 3
30x + 60
2x — 2
x — 2
- (w
3x + 3
8w + 15) 4w —W +^3 20
See Problems 4 and 5.
- c2 - 1
34.
37.
x — 3. 3 — x
2n2 - 5n — 3. 4« + 5
4«2 - 12« - 7 ‘ 2n - 7
40.4 + 1 ^ 1 1 ^ - 1 )
x2 + 12x+ 11
^ See Problem 6.
41.
43.
b 2 + 2 b + 1
12fc - 3
b2 - 1
6s+ 12
s + 2
42.
44.
3x2 + 2x + 1
8x_____
12x2 + 8x + 4
f — 6
t-3
t + 2
- x2 + 6x + 5
2x- 10
47.
49.
g+2
3g~l
g 2 + 2 g
6g + 2
z- 10
z+ 10
3z2 - 30z
- 3d^2 + 5 d -2
2d + 4
48.
50.
5 r
10 /
f +1
c + 4
c2 + 5c + 6
3c2 + 12c
2c2 + 5c - 3
674 Chapter 11 Rat io nal Expressions and Funct ions