Division Property of Square Roots
For every num b er a > 0 and b > 0, \/\ = ^vF
Trig o n o m et ric Rat io s
sine o f LA =length of leg opposite length of hypotenuseLA^
cosine o f LA =
tangent o f LA =
length o f leg adjacent to /LA
length o f hypotenuse
length of leg opposite LA
length o f leg adjacent to LA
Ch ap t er 11
and Functions
Rational Expressions
Inverse Variat ion
A n inverse v a ria tio n is a re la tio n s h ip t h a t can be re p re s e n te d
by a function o f the form y = f , where k A 0.
Ch ap t er 12 Data Analysis and Probability
Mean
The m ean o f a set o f d a ta values = t J^ber otdata'values-
St a n d a r d D e v i a t i o n
S ta n d a rd d e v ia tio n is a m e a s u re o f h o w th e valu es in a d a ta
set vary, or deviate from the mean.
Pi
Multiplication Counting Principle
If th e re are m ways to make a first selection and n ways to
make a second selection, there are m • n ways to make the
tw o selections.
Perm u t at io n N o t at io n
The expression nPr represents the number of permutations of
n objects arranged r a t a tim e.
P = n'-
n r (n - r)\
Co m b i n at i o n N o t at i o n
The expression nCr represents the number of combinations
of n objects chosen r a t a tim e.
nQ=
n\
r\(n - r)\
Theoret ical Probabilit y
Pfp vp n t j = number of favorable outcomes
' ' number of possible outcomes
Pr o b ab ilit y o f an Ev en t an d It s Co m p lem en t
P (e v e n t) + P ( n o t e v e n t) = 1, o r
P(not event) = 1 -P(event)
Odds
Odds in favor of an event =
Odds against an event
number of favorable outcomes
number of unfavorable outcomes
number of unfavorable outcomes
number of favorable outcomes
Ex p e r i m e n t a l P r o b a b i l i t y
P(event) =num ber o f tim es t he experim ent is donenumber of times the event occurs
Pr o b ab i l i t y o f M u t u al l y Ex cl u si v e Ev en t s
If A and B are mutually exclusive events, then
P(A o r B) = P {A ) + P (B ).
Pr o b ab ilit y o f Ov er lap p in g Ev en t s
If A and B are overlapping events, then
P(A o r B) = P {A ) + P{B) - P{A and B ).
Pro b ab ilit y o f Tw o In d ep en d en t Even t s
If A and B are independent events, then
P(A a n d B) = P(A) • P{B).
Pr o b ab ilit y o f Tw o D ep en d en t Ev en t s
If A and B are independent events, then
P(A th e n B) = P (A ) • P(B a ft e r A ).
O
CO
c
PowerAIgebra.com | Re f e r e n c e^819