Algebra 1 Common Core Student Edition, Grade 8-9

(Marvins-Underground-K-12) #1

  1. -5

  2. 3

  3. -12
    -1 4 -1 2 -10

  4. -11 21. 5 23. -11 25

  5. -20 33. 48 35. -2 37

  6. $48.54 45. -7.1 47


II
1.6 41. | |36 1 s
The sum of -4 and 5 is +1,

4.4 27. -3
-20.3 39.

not -1; —4 — (—5) = —4 + 5=1 49. 51. 1


  1. positive 55. negative 57. Find the absolute value of
    each number. The sign of the number with the larger
    absolute value will be the sign of the sum. 59. False; if
    both numbers are negative, the difference is larger than
    the sum. If the absolute values are equal, the sum is 0.

  2. 29.62 in. 63. -2 65. Sometimes; only true when
    m = 0, the result will be -m = m 67. 69a. Yes;
    check students' work. Sample: 13 — 1 1 = 1 2 1 = 2 and


Prop, of Add. b. False; answers may vary. Sample:
4(2 + 1) =£ 4(2) + 1 c. No; it is true when a and b are
both either 0 or 2.
Lesson Check 1. Comm. Prop, of Add. 2. Assoc. Prop,
of Mult. 3. $4.45 4. 24 d 5a. no b. yes 6. Comm. Prop,
of Mult.; Assoc. Prop, of Mult.; multiply; multiply
Exercises 7. Comm. Prop, of Add. 9. Ident. Prop, of
Add. 11. Comm. Prop, of Mult. 13.36 15.9.7 17.80



  1. $110 21. 18x 23. 110p 25. 11 + 3x 27. 1.2 + 7cf

  2. 1.5n 31. 11y 33. False; answers may vary. Sample:
    8 -e 4 + 4 + 8 35. true; Mult. Prop, of -1
    37a. 497 mi b. 497 mi c. The Commutative Property of
    Addition applies to this situation. 39. no 41. yes 43. yes

  3. no 47. Hannah can only afford to give all her friends
    the same gift. 49. 390 51. 0 53. no; (a - b) -
    c # a - (b - c) 55. no; (a a- b) a- c + a a- (b + c)
    57. (b + c)a = a{b + c) and ba + ca = ab + ac by the
    Comm. Prop, of Mult. 59. H 61. F 62.-6,1.6, V6,
    63 63. -17, 1.4, f, 102 64.-4.5,1.75, V4,141

  4. 14 66. 1 67. 1.1 68. ^


Got It? 1. -4 2a. -24 b. -2 c. -2 d. -8 3a. 13 5
b. any value where a = £> 4. -2473 ft, or 2473 ft below
sea level
Lesson Check 1. -3 2. -3 3. -3 4. -7 5. 2 6. -7


  1. 0 8. Subtracting is the same as adding the opposite.

  2. The opposite of a number is the number that is added
    to it to equal 0. If a number is positive, its opposite is
    negative. However, if a number is negative, its opposite is
    positive.
    Exercises

  3. 5 ii— i— i— i— i— i— i— i— i— i— i— - ----------------------h
    -3 -2 -1 01234567


Lesson 1-5 pp. 30-36

11 - 3 1 = | - 2 1 = 2 b. No; check students' work. Sample:
|3 + (16)| = |- 3 1 = 3 but |3| + | — 6 | = 3 + 6 = 9


  1. H 73. F 75. yes 76. no 77. yes

  2. rational numbers 79. rational numbers 80. rational
    numbers, whole numbers, natural numbers, and integers

  3. rational numbers 82. irrational numbers 83. 18.75

  4. 17 85. 318
    Lesson 1-6 pp. 38-44
    Got It? 1a. -90 b. 2.4 c. -§£ d. 16 2a. 8 b. ±4
    c. - 1 1 d. ± \ 3. - $72 4a. — ^ b. Yes; a positive
    divided by a negative is negative and the opposite of a
    positive divided by a positive is also negative.
    Lesson Check 1. 36 2. 3.-16 4. | 5.-5
    6. -5 —5 t -5 j 7a. 2; a positive number
    —i-------- 1 --------- 1 ------ 1 —*- has a positive and negative
    ~15 “10 ~5 0 square root. b. 1 ; V 0 = 0 ,
    so there is one square root.
    Exercises 9. 96 11. 20.5 13. -25 15. ^ 17. 1
    19. 1.44 21. 13 23. -30 25. -§ 27. 29. ±0.5
    31. -6 33. -3 35. -0.9 37. -250 39. $115 41. 3
    43. -1 45. —i f f 47. \ 49. -94\ bushels 55. -180
    57. 38| 59.-13°F tr 61. First change -2%j to the
    improper fraction Then multiply - I 3 by the
    reciprocal of -| , which is -|. 63. or 12g| 65a. If
    0 + x = y, then xy = 0. Since x + 0, then y = 0 by the
    Zero Property of Multiplication, b. Suppose there is a
    value of y such that x -e 0 = y. Then x = 0 • y, so x = 0.
    But this is a contradiction, since x ± 0. So there is no
    value of y such that x + 0 = y. 67. Always; the quotient is
    -1. 69. -8 71. 1 73.30 74. -10 75. -10 76. Ident.
    Prop, of Add. 77. Comm. Prop, of Mult. 78. Assoc. Prop,
    of Mult.
    Lesson 1 -7 pp. 46-52
    Got It? 1a. 5x + 35 b. 36 - 2f c. 1.2 + 3.3c
    d. - 2 y 2 + y 2 a. |x - y b. ^ + \x c. | + =rx
    d. \ - \x 3a. -a - 5 b. x - 31 c. -4x + 12
    d. - 6 m + 9n 4. $29 5a. 2y b. -12mn 4 c. 8 y 3 z-
    6 yz 3 d. No; it is already simplified since there are no like
    terms to combine.
    Lesson Check 1a. 7y + 14 b.- 8 x + 24 c.-4 + c
    d. -11 - 2b 2. - 8 x 2 + 3xy + (-9x) + (-3) 3. 2 ab +
    (-5ab2) + (-9a2b) 4. yes 5. no 6 a. yes b. no;
    Commutative Prop, of Mult. c. yes d. no; Associative
    Prop, of Add. 7. 500 - 1; answers may vary. Sample:
    These numbers are easily multiplied by 5, making it
    possible to use the Distr. Prop, to solve this using mental
    math. 8 a. yes; no like terms b. This expression can be
    simplified by using the Distr. Prop. c. No; 12xyand 3yx
    are like terms.
    Exercises 9. 6 a + 60 11. 25 + 5w 13. 90 - 10f
    15. 11 2b + 96 17. 4 .5 - 12c 19. f-2 21. 12z + 15

Free download pdf