Algebra 1 Common Core Student Edition, Grade 8-9

(Marvins-Underground-K-12) #1
c. Answers may vary. Sample: The function values increase
more rapidly. 51. 6 53. 3 55a. 4 b. 3 c. y = 4 • 3X
d. §; 324
Lesson 7-7 pp. 460-466
Go t It? 1. about 43,872 subscribers; 1.05m


  1. $4489.01 3a. about 55 kilopascals b. The decimal
    equivalent of 100 % is 1.
    Lesso n Ch eck 1. 4 2. 15 3. 0.2 4. 0.94

  2. $32,577.89 6. If b > 1, then it is exponential growth.
    If 0 < b < 1, then it is exponential decay. 7. The value of
    n = 1 so the formula becomes A = P(1 + r)f.

  3. The student did not convert 3.5% to a decimal;
    A = 500 (l + ° T p j (4‘2)= 500(1.00875)8 = 536.09.
    Ex e r c i se s 9. 14, 2 11. 25,600, 1.01 13a. 15,000
    b. 0.04, 1.04 c. 1.04 d. 15,000, 1.04, x e. about
    39,988 15. $5352.90 17. $634.87 19. $5229.70

  4. $1277.07 23. 5, 0w.5 25. 100, | 27. about
    33,236 29. exponential decay 31. exponential
    decay 33. No; the value of the car is about $5243.

  5. Answers may vary. Sample: y = - 4 • 1.05x; this is an
    exponential function, but it models neither exponential
    growth nor decay because a < 0. 37. neither
    39a. P = 400(1.05)n, where n is the number of years
    and P is the profit, b. $5031.16 41a. $220 b. $3.96
    c. $223.96 d. $193.96 e. 9 m onths f. $18.07
    Lesson 7-8 pp. 4 6 7 -4 7 2
    Go t I t? 1a. geometric b. arithmetic c. geometric
    d. neither geometric nor arithmetic 2 a. an = ar)_ 1 + 2 ,
    a, = 2;a„ = 2 + (n-1X 2)
    b. an ar (l),a1=40;an = 4 0 .(l)n 1
    3a. an = an_i - 6, ai = 14;an =
    14 • 6n_1; a8 = 3,919,104 b. an = an • 1, a , =
    648; an = 648 • (?)n_1; a8 « 5.06

  6. f(x) = 2 • 3X_1;


Lesso n Ch eck 1. yes; 3 2. yes; | 3. no
4. a n = 5 • 4n“ 1; a n = an_i • 4, a: = 5


  1. an = 4 • (—2)n1; an = an • ( - 2 ) , a! = 4
    6. an = 162 • ( § ) " '; an = a n
    -| • ( | ) , a 1 = 162
    7. an = 3 • (2)n~1; an = an_, • (2), a 1 = 3 8. Answers
    will vary. Sample answer: This is the explicit formula. The
    recursive formula is a-| = 1, an = a n_i * ( - 1 ). 9. Both
    arithmetic and geometric sequences can increase or
    decrease. Geometric sequences increase or decrease by a
    constant ratio. Arithmetic sequences increase or decrease
    by a constant difference.


Ex e r c i se s 1 1. not geometric; no constant ratio


  1. geometric; constant ratio of | 15. geometric;
    constant ratio of 2 17. y 19. 4 21.-3

  2. an = 3 • (2)n- ] 25. an = 3 • (-4 )n~1

  3. an = 686 • (y) 29. a-1 = 1, a n = an_-| • 5

  4. a\ = 2, an = an_i • (—4)

  5. a-1 = 192, an = an-1 * (|)

  6. an = 48 • ( | ) ; an = an_! • a^ = 48

  7. f{x) = 8 • 2X 1; The graph of the function passes
    through the points (1, 8), (2, 16), (3, 32), (4, 64). 39. not
    geometric 4 1. geometric; y;^1 an = 98 • I j) ;
    a! = 98, an = an• y

  8. geometric; -j, an = 200 • (-y )° \ a-| = 200,
    an = an_i • (- y ) 45. arithmetic

  9. arithmetic 49. geometric 51. Check students'
    answers. 53. Both sequences triple for each following
    term. However, the first sequence starts at 5, while the
    second starts at 10. 55. G 57. 1

  10. an = 0 + 9n; a^ = 0, an = an_i + 9

  11. an = 5 + - 2 n ; a! = 0, an = an_-| + (-2)

  12. an = - 7 + 4n; a-| = - 7 , an = an_-| + 4

  13. x = -8 63. y = —2 64. a = ^ 65 .7 5 %
    increase 66. 37.5 67. 2 x + 5y 68. 4a + 2b



    • 4 c + 5d




Chapter Review pp. 474-478


  1. geometric sequence 2. growth factor 3. decay factor

  2. exponential growth 5. exponential decay 6. 1
    7- i 8. ^ 9. 10. 9 11. ^ 12. 1 13. 45 14. f

  3. -yy 16. No; - 3 should be raised to the fourth
    power instead of multiplying it by 4. 17. 32 • 38 = 310

  4. a 6 • a 2 = a 8 19. x2y5 • x3)/6 = x5y 1 1


20. (^11 32) • a 2 = a 21. xs • X 2 4 3 n = xi 2 22. m*m3 1 • m^m =1 1
min 23. 2d5 24.x7 25. -xV 2 26. sit 27. pfgl



  1. 6 mn3 29. 7.8 X 103 pores 30. 3 31. -5 32. 2

  2. (xf)2 = x 2 34. (aj)j = al 35. (2x2y l)2 = 4x4^


898

Free download pdf