- q,12r4
- a3bi 42
37. 1.7956 38.243x3y1 16 39.
43. 7x4 44. ,21 45.
3r10z8
o20
- x4
81c12
- 2 X 10“ 3 47. 2.5 X 102 48. 5 X 10“ 5
- 3 x 103 50. Answers may vary. Sample:
- Simplify the expression within the parentheses.
- Take the reciprocal of the rational expression raised to
the third power. - Use the quotient raised to a power rule by applying the
exponent to both the numerator and denominator.
- Simplify the numerator.
- Simplify the denominator using the power rule.
- Vm 52. 53. 6x2 54.5 ^ x
- 8 ^x 3 56.x^25Vy 57. (xy)2 58. a 4 59. b§
- x2y3 61. 3x2 62. x§ys 63. 4, 16, 64
- 0.01, 0.0001, 0.000001 65. 20, 10, 5
- 6, 12, 24
- y
X
- y
A
/
_ X
0
- y
X
- c
71a. 800 bacteria b. about 1.4 x 1016 bacteria
- exponential growth; 3 73. exponential decay; 0.32
- exponential growth; \ 75. exponential decay; \
- $2697.20 77. 463 people 78. 2 79. 10 80. 5
- ^ 82. a-1 — 20 , an — an—-1
- d'j
- d-j
5, an 3n--\
= 10 , a„ = an_!
- a-| — 3, an —
10
Ch ap t er 8
Get Ready! p. 483
- 1, 2, 3, 4, 6 , 12 2. 1, 2, 3, 6 , 9 , 1 8 3. 1, 2, 4, 5, 10, 20,
25, 50, 100 4. 1, 3, 9, 27, 81 5. 1, 2, 3, 4, 6 , 8 , 9, 12, 18,
24, 36, 72 6. 1, 2, 3, 4, 5, 6 , 10, 12, 15, 20, 25, 30, 50,
60, 75, 100, 150, 300 7. 1, 2, 5, 10, 25, 50, 125, 250
8.1,3,9,23,69,207 9. x 2 - 9x 10.3cf+ 15
11
14
24r2 - 15r 12. 34m - 29 13. -36a2 - 6 a
>2 - 7s - 2 15. 25x2 16. 9vt 17. 64c6
- 56 mf 19. 81b6 20. 36 p2q2 21. 7n 22. -125f12
- p 2 qr 3 24. 5x 25.^1 26. 3y 2 27. 3
- A binomial is an expression with tw o terms.
- b; (x + 4)(x + 4) = (x + 4)2, which is a square, and
(x + 4)(x + 4) = x^2 +^8 x + 16, which is a trinomial.
Lesson 8-1 pp. 486-491
Go t It? 1a. 2 b. 5 c. 0 2. 5x4, - 5 x 2 y 4
3a. 8 x 2 + 2x - 3, quadratic trinomial b. Answers may
vary. Sample: Writing a polynomial in standard form
allows you to see which monomial term has the greatest
degree and how many terms the polynomial has.
- -12x 3 + 120x 2 — 255x+ 6022
5. -4m 3 - 4m 2 - 2m + 21
Lesso n Ch eck 1. 4 2. 5 3. 11r 3 + 11 - x 2 — 3x — 7 5. quadratic trinomial 6. linear
binomial 7. The coefficient of the sum of like monomials
is the sum of the coefficients. To add polynomials, you
group like terms and add their coefficients. A monomial
has only one term and a polynomial can have more than
one term.
Ex e r c i se s 9. 3 11. 10 13. 0 15. no degree
17. 11m 3 n 3 19. 1414 21. 18v4w 3
- 8 be 4 25. -2q + 7; linear binomial
- -7x 2 - 4x + 4; quadratic trinomial
- 3z 4 - 2z 2 - 5z; fourth degree trinomial
- 9x 2 + 8 33. 2Ox 2 + 5 35. - 1 8 x 2 + 228x + 2300
- 2x 3 + 8 39. 5b 4 + b 3 41. 9x - 1
- The student forgot to distribute the negative sign to
all the terms in the second set of parentheses.
(4x 2 - x + 3) - (3x 2 - 5x - 6 ) =
4x 2 — x + 3 - 3x 2 - (-5x) - ( - 6 ) =
4x 2 - 3x 2 - x + 5 x + 3 + 6 =
4x + 9 45. -5y 3 + 2y2 - 6
3z 3 + 15z2 - 10z - 5 49. No. Answers may
x 2
47
vary. Sample: (x 2 - x + 3) + (x - x 2 + 1) = 4,
which is a monomial. 51. 14 p g 6 - 11 p4q - p 4 g 4
Lesson 8-2 pp. 492-496
Go t It? 1 .15n^4 - 5n^3 + 40n 2. 3x
3a. 3 x 2 ( 3 x 4 + 5x 2 + 4) b. - 6 x 2 (x 2 ■
- 9x2(4 -^77 )
3x + 2)
Lesso n Ch eck 1. 12X4 + 42x2 2. 2a 2 3. 3m(2m - 5)
- 4x(x 2 + 2x -
Sample: 18x3
-3) 5. B 6. C
27 x2
- A 8. Answers may vary.
C
Pow erAlg eb ra.com i S e l e c t e d A n s w e r s
CD
CDn
CD
Q_
§
i
■s
u*
899