OBJECTIVE 4 Use combinations of rules.
Using Combinations of RulesSimplify. Assume that all variables represent nonzero real numbers.
(a)
Power rule (a)Quotient rule= 4
= 41
= 46 -^5
=
46
45
14223
45
EXAMPLE 5
308 CHAPTER 5 Exponents and Polynomials
NOW TRY
EXERCISE 5
Simplify. Assume that all
variables represent nonzero
real numbers.
(a) (b)
(c) (d)
1 a^2 b-^2 c 2 -^3
12 ab^3 c-^425a7 y^4
10b- 3
14 t 2514 t 2 -^3315
(^13324) (b)
Product rule
Power rule (b)
= 32 x^5
= 25 x^5
= 12 x 25
12 x 2312 x 22
(c)
Power rules (a)–(c)=
625
16 x^12
=
54
24 x^12
= a
5
2 x^3
b
4a
2 x^3
5
b
- 4
(e)
Power rule (b)Negative-to-positive ruleQuotient ruleor NOW TRY
81 m
64
=
34 m
43
,
=
34 m^4 -^3
43
=
34 m^4
43 m^3
=
4 -^3 m-^3
3 -^4 m-^4
14 m 2 -^3
13 m 2 -^4
(d)
Power rules (a)–(c)=
x^6 y^9
1728
=
x^6 y^9
43 # 33
=
3 -^3 x^6
43 y-^9
a
3 x-^2
4 -^1 y^3
b
- 3
Negative-to-
positive ruleNegative-to-
positive ruleNOW TRY ANSWERS
- (a) (b)
(c) (d) c17
32 a^11 b^91000
343 y^1233 , or 27 16 t^2Complete solution available
on the Video Resources on DVD
5.2 EXERCISES
Decide whether each expression is equal to 0, 1,or. See Example 1.9. 10. 11. 12.
05
20
010
120
1 - 420 - 40 1 - 1120 - 110
- 80 - 60 - 1 - 620 - 1 - 1320
90 30 1 - 220 1 - 1220
- 1
http://www.ebook777.com
http://www.ebook777.com